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PRZFACZ

The objective of this monograph is to facilitate the

application of Bayesian decision theory in the marine industry.

The author's experience in dealing with various parts of the

marine industry indicated that people at two separate levels

had to be addressed if a much broader and more systematic ap-

plication of modern decision theory in marine operations could

be effected.

Practicing marine decision-makers have to be introduced

to the basic concepts of decision-making under uncertainty at an

elementary level in the context of problems with which they

are familiar. Analysts who have the background need illustra-

tive examples which bring the full force of these ofttimes

powerful techniques to bear on some of the more challenging

problems facing the marine investor and operators. As a

result, the book is more than a little dichotomous.

The first three chapters constitute an elementary introduc-

tion to decisions under uncertainty, Bayesian decision theory and

dynamic programming respectively. They assume no prior knowledge

of these techniques. In these chapters only the presentation is

original and sometimes not even that. Chapter 1 is adapted from

Ronald Howard's class notes entitled "The Used Car Buyer" and

Chapter 2 leans heavily on Raiffa's eminently readable "Decision

Analv~m" which is hiyhlv reaammended as cog@anion xeadina.

The final three chapters app3,y these teciiniques- to- a hopefully-

representative spectrum of marine problems involving substantial

uncertainties. These chapters presuppose an increasing level of

probabilistic sophistication. In particular, Chapters 5 and 6

assume some familiarity with continuous random variables and

density functions. However, the arguments used in these latter

chapters are basically repeated applications of the same simple

principles developed in the first three. Therefore, it is hoped

that a reader without any training in probability will be able to

follow the gist of the reasoning. Co~versely, readers familiar with

probability, Bayesian decision theory or dynamic programming should

skip the respective introductory chapters or tarry there only long

enough to pick up the author's notational idiosyncracies before

moving on to the applications.
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Chapter 4 is directed at the alternatives facing those
decisionmakers who operate in the ship charter markets, both
owners and charterexs. The chaptex begins with a study of
the vessel employment decisions facing an owner who already
has a ship--whether or not to accept the present charter
rates and, if so, for what length of charter. Once we have
developed methodology for generating chartering decisions
which are consistent with the owner's feelings about the
uncertain future of the market, it is a relatively simple
matter to broaden our horizon a bit and address the problem
of whether or not the owner should invest in a ship. Chapter
4 concludes with a brief treatment of the problem facing the
combined ownex-charterer such as the large oil company and.
develops methodology for comparing alternative mixes of own
ships, long term charters, and short term charters.

Chapter 5 is devoted to marine hardware maintenance
problems. This chapter is based on the premise that typically
the decisionmaker not only does not know when a component
will fail but also he does not even know how reliable the
component is in the sense of knowing the parameters which
govern the failure process. He cannot, for example, be sure
what the mean time between failures is of a new power plant
with which he has very limited operating experience. Chapter S
addresses this problem by starting with a situation in which
these two types of uncertainties are related in an extremely
simple manner, boiler tube replacement; and then moves to
the general pxoblem of how one might design maintenance and
replacement policies when one has limited failure data on the
components in question.

Chapter 6 addresses search and exploration problems at sea.
Once again the undexlying idea is that the decisionmaker not
only does not know where the object of his search is, but also
he does not know how good his sensors are in locating whatever
he is searching for. Bayesian thinking is applied to this set
of problems in the context of retrieval of a lost object. and
then in the context of exploration for offshore petroleum resources.
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MARINE DECISIONS UNDER UNCERTAINTY



CHAPTER l

AN INTRODUCTORY EXAMPLE

l.l PREAMBLE

All decision-makers face varying degrees of uncertainty.

However, few executives confront uncertainties of the type and
magnitude facing the marine investor and operator. Operating at
sea has always been an inherently risky business attracting only
the bold or the desperate' And, if it is less risky now with
respect to bodily survival, it is hardly less risky with respect
to economic survival. For example, the independent tanker owner--

and his customer, the charterer--operate in a commodity market,

the magnitude of whose price fluctuations is unheard of in any
other financial arena. The spot tanker rate can vary by a factor

of seven or eight in a matter of months depending on the vagaries
of oil finds and the policies and whims of less than completely

stable governments. The owner's capital is tied up in a small
number of very large units. Despite technological progress, he
is still sensitive to wind and fog and operator error in a unique

way. The loss of a single unit will involve losses and liabili-
ties of tens of millions of dollars.

Or consider the case of the man who would tap the ocean

floor for petroleum or minerals. The offshore operator immedi-
ately faces exploration costs which are not on.ly ten times greater
than their upland counterparts, but which are far less predict-
able as well. Further, the information he obtains from the same

experiments is generally of a much lower quality leaving him with
much greater uncertainties at the point where he must decide to
drill or mine. Finally, the costs of such production operations

are an order of magnitude greater and far less predictable than

they are on land. Yet, mineral and petroleum exploration and
development on land is regarded by landlubbers as an extremely

risky business indeed.

In short, the essence of marine decision-making is the jug-
gling of uncertainties, the balancing of risk versus return.



Despite this fact, the systematic treatment of uncertainty has

received little attention in marine practice or the marine litera-

tures�** One result of this lack of attention is that. the marine

decision-maker finds that the set of decisions to which he can

usefully apply quantitative analysis is quite limited. The re-
sulting attitude is concisely expressed in the sometimes skepti-
cal, sometimes derogatory, and sometimes plaintive query: "How

can you analyze what you cannot predict'?" This book is an at-
tempt to answer this perfectly reasonable question.

This book will suggest a systematic scheme for thinking

about marine decisions in which the outcomes cannot be predicted.

Zn very rough terms, the suggested analysis requires that you,

the decision-maker,

1! Accept a certain small set of rules or axioms as to

what constitutes "rational" decision-making under

uncertainty--a set of axioms that you want your de-

cisions to be consistent with, a set of axioms which

I will attempt to persuade you make sense;

2! Having done so, we will be able to develop proce-

dures for quantitatively assessing

a! youk judgments about the likelihood of the

events which may affect the outcome of your

choices,

b! how well you like the consequences that may re-

sult for the various courses of action open to

you;

3! Finally, we will develop procedures for synthesizing
the judgments and values revealed in 2! to obtain

decisions which are consistent with these judgments

and values and the basic postulates concerning ra-

tional decision-making.

*important exceptions to this statement include references lO,
ll, and 2l.



Needless to say, despite the somewhat dramatic introductory

paragraph, not all marine decisions are worth the trouble. In
many cases, your decisions can be made without a lot of fussy
Either your best choice is clear to you without much analysis or
the decision is not important enough to be worth the effort.
Occasionally, however, you will find yourself in situations with
obviously important choices where it is not at all obvious which
of a number of alternatives is consistent with your desires and
your state of knowledge. It is to such decisions that this
book is addressed.

We will begin our analysis of such decisions by examining in
some detail a problem which is simple enough so that all the
elements of decision-making under uncertainty can be clearly
exhibited and. complex enough so that it is not obvious at first
glance just how the problem should be approached.

1.2 JOE, THE SECONDHAND BOAT BUYER*

A shipowner named Joe of our acquaintance is in the market
for a used C4.** After surveying a number of brokers, he has
found one such ship for one million dollars. The best deal he
can get. elsewhere is $1,100,000 for a fully found ship. Joe likes
the looks of this particular ship and figures he will save
$100,000 by buying it. Unfortunately, just as Joe is about to
close the deal, he overhears the broker who has been serving him
talking with another broker. His broker says, "This business is
a tough racket. I have a buyer for that old C4, but the prac-
tices of our business prevent me from warning him that he may get
stuck if he buys it." The other broker asks, "What do you mean?"
Joe's broker replies, "I used to work for the company that built

that ship. � They buil~. 20% of thzs c'as . in- a.-.'AeW .� yagci wnere :ney ''
were still having production -roub3.es; 'those ships w'ere lemons.

" A C4 is a moderately large general cargo ship built in the
USA during the fifties'

**This problem and most of its description were originally
developed by Ronald Howard in his classroom notes, "The Used
Car Buyer." This material is being used through the permission
of Professor Howard.
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The other 808 of total production were pretty good ships; peaches,

we used to call them." The other broker asks, "What is the dif-

ference between a 'lemon' and a 'peach?'" "Well," says Joe's man,

"If we regard each ship as having 10 major subsystems, hull,

power plant, fuel, electrical, etc.; the peaches all had a seri-

ous defect in only one of these 10 systems, but the lemons had

serious defects in 6 out. of 10 systems." The other broker re-

plies, "Well, don't feel bad; maybe some ships didn't have any

defects, or maybe the defects in this ship have already been

fixed."

"No, that's just it," says Joe's broker. "Every ship of

this age built by this company had either one or six defects in

the ratio I mentioned, and I happen to know, because the previous

operator was a friend. of mine, that this particular ship has

never been repaired." "If it is bothering you so much, why don' t

you tell the guy it's a lemon and forget about it?" says the

other broker. "Ah," answers Joe's man, "that is the trouble.

I personally don' t, know whether or not it is a lemon, and I am

certainly not going to take the chance of losing a sale by

worrying a customer unnecessarily." To which the other broker

replies, "It's time for coffee."

We can imagine the state of our friend Joe. What seemed.

like a real bargain has turned into a potential nightmare. Joe's

first reaction is to turn and flee, but he has the icy nerves

required of a marine decision-naker and so soon regains his com-

posure. Joe realizes that he would be foolish to forego the

chance to buy the ship he thought he wanted, at this price, with-

out good reason. He decides to call a nearby yard and get an

estimate of what the possible repairs might cost. The yard re-

ports that it costs about $40,000 to repair a single serious

defect in one of a ship's major systems, but that if six defects

were to be repaired the price for all six would be $200K.

Joe considers the possibilities open to him. He can buy the

ship in which case his outcome is uncertain. If the C4 turns out

to be a peach, then only one defect will develop and Joe will



We can represent the structure of Joe's problem by drawing

a decision tree like that, shown in Figure 1.1 ~

JOE'S ORIGINAL DECISION TREE

FIGURE 1.1

60K

-lOOK

Joe buys ship
Joe refuses to buy
Ship is a peach
Ship is a lemon

B:

R:

p:

In this diagram, the decision process moves from left to right

through time. Each branch or link represents some event in the

decision problem. We have used B to indicate the event of Joe's

buying the ship, and R to indicate his refusing it. P is the

event of the ship's ultimately turning out to be a peach, while

L i s the event of. the sbiD'.s heiM .a remap-. Note Pbat..dif fexeat

symbols are- used. 'for.-.lthh'-'- j bhbtiori ipoirit or -node'=".j6ln16g'-, tiM -S4R"

branches and the modes joining the P-L branches. The Q is used

have made a net gain of $60K--100K from buying the ship at a low

price less $40K for repairing the one defect. However, if the
ship should be a lemon, then Joe will lose $100K because it
will cost him $200,000 to repair the six defects to be found

in a lemon. If, on the other hand, he refuses to buy, then he

gains and loses nothing relative to where he stands now.



to indicate points in the decision tree where the decision-maker

must decide on some act; the Q is used for nodes where the

branch to be taken is subject to chance rather than Joe's deci-

sion. We shall call these two types of intersections "decision

nodes" and "chance nodes," respectively. 1n this example, Joe's

only decision is whether to buy or refuse to buy; consequently,
only the node joining the B-R branches requires an Q . The
ultimate outcome as to whether the ship is a peach or a lemon

is governed hy chance and so the P-L branches are joined by an 4 .

Generally, traversing each branch on the decision tree

will bring some reward, positive or negative, to the decision-
maker ~ We will write this reward under each branch. 1n Figure

1.1 we have written lOOK under the branch labeled B to represent

the immediate savings to Joe in buying the ship; 0 is written

under the R branch because Joe will neither gain nor lose by

refusing to buy. The numbers under the P and L branches refer

to the cost of repairing a peach and lemon respectively. If

the decision-maker follows a tree from its starting node to

any of its tips, then he will experience some patterns of gains
and losses according to the branches he actually traverses.

The net gain of all such h traversals is written at each tip



cide whether to make Joe's ship a peach or a lemon, Nature
flips a coin in which the odds of a head are 8 out of 10. If
the coin comes up heads, Nature chooses a peach; if tails, a

lemon.

Joe is a confirmed horseplayer, so he has no trouble
thinking quantitatively about likelihoods. However, he has had
some difficuLty keeping track of the myriad ways horseplayers
talk about their chances. He realizes that the expression "the
chances are four out of five," "eight out of ten" or "sixteen out
of twenty" all express the same likelihood. He has found it
expedient in thinking about his chances in horseracing to ex-
press all his odds relative to the same base, namely, the num-
ber 1.00. That is, he is in the habit of assigning a likeli-
hood of 1.00 to events he is certain will happen and a likeli-
hood of .00 to events he is certain will not happen. To an
event whose chances are 1 out of 2  or 5 out of 10 or...! he
assigns a likelihood of .5 and, in general, if he thinks the
chances of an event are x out of y, he assigns a likelihood
of x/y. Joe decides to do the same thing in analyzing his ship-
buying problem. On this basis the likelihood of a peach is .8
and the likelihood of a lemon is .2. When likelihoods are ex-
pressed in this manner, we will call the likelihoods pco6a.6i-
GXiea.* As simply a matter of shorthand, we will denote the
probability of any event, E, by the symbols "Pr E!." Thus, for
Joe, Pr P! = .8 and Pr L! = .2.

One of the advantages of expressing likelihoods
as probabilities is that these probabilities can
be represented as relative areas in a simple graphic
device known as a Venn diagram. To see this, we
will need some definitions describing precisely
what we mean by an event.

*In Chapter 2, we will give a considerably more precise
definition of what a probability is.



An evert is a well-defined out-
come or set of outcomes of an

experiment.  An e,mph.himanC is
any process whose outcome is
not known with certainty by
the decision-maker.! Events
can be visualized as collections

of points or areas like those
shown in the space at left,
which space represents the
set of all possible outcomes
of the experiment.

The collection of all possible
outcomes of the experiment is
called U, the universal event.
In Joe's case there are only
two possible outcomes. Hence,
U equals the combined event
"Nature comes up with either
a peach or a lemon."

Event A', the Complement of
event A, is the collection of
all points in the universal
set which are not included in
event A. In Joe's problem the
complement of P is L and the
complement of L is P.

The i~teeaecl~an of two events
A and B is the collection of all

outcomes which are contained

both in A and in B. The inter-
section of A and B is denoted

AB. The intersection of the

only two possible outcomes in
Joe's tree, P and L, contains
no outcomes because P and L

don't overlap, in which case
we say the intersection is
empty.

The ue~ort of two events A and B

is the collection of all out-
comes which are either in A or

in B or both. The union of

A and B is denoted A+BE As
noted earlier, in Joe's case
the union of P and L is the
whole space.



A list of events, Al,A2...,A
n

are said to be mutually ex-
clusive if no outcome is con-

tained in more than one member

of the list. Both the lists
to the left are mutually exclu-
sive. The events P and L in
Joe's problem are mutually
exclusive.

A list of events, Al,A2...,A
is said to be colZe.ei~vely
e.x.hauhlive. if every outcome is
a member of at least one of the
events in the list. Both the
lists to the left are collec-
tively exhaustive. The events
P and L are collectively
exhaustive.

We can represent the probability of an event by
the amount of space in the Venn diagram which the
event takes up. An event is certain to occur only
if all possible outcomes of an experiment are inclu-
ded. in it. Its probability is 1.00 and it takes up
the entire space. If an even is certain to not
occur, it takes up no space and, in general, if the
probability of an event is .x, then it takes up x%
of the space. For Joe's problem the situation can
be represented.

We will use this representation below in helping Joe
to think about his problem.



Returning to the decision tree representation of Joe's
problem we shall indicate the probability with which Nature
makes her choices on branches emanating from chance nodes by

writing above the beginning of each such branch the probability
that Nature will follow that branch. In the present example,

the probability associated with the branch marked P is ~ 8 and
that associated with the branch marked L is .2. Joe's deci-

sion tree with the probabilities included is shown in Figure 1.2.

60

28

000

FIGURE 1 ~ 2

JOE'S DECISION TREE WITH PROBABILITIES

Figure l. 2 is a complete representation of Joe 's problem.

Which course of action should Joe choose? Home decision-makers

 DNs! vill decide on Refuse to Buy right off because they re-

alize that there is at least some chance of losing $100,000

and the potential winnings  $60,000! is not nearly high enough

for them to justify the gamble. There is nothing irrational

about this. Fairly frequently, for example, a person is not

willing to pay even $10 for a fifty-fifty chance at $0 or $100.
There are, however, other people who will pay $49 or up to $50

for this same gamble. There are still others who will pay $S2

or more because they are willing to pay a premium for the thrill

10



of the game, for "action" or perhaps because they feel that
they can't do what they want to do with the $52 they now have,
but if they had $100 everything would be ideal. In general,
people's attitudes toward the possible consequences can vary
over a wide range. It is unreasonable to expect that people

will gamble alike.

In this introductory chapter, we will arbitrarily assume

that Joe is an ENV'er. EMV'ers constitute the class of people

who are willing to make choices under uncertainty on the basis

of maximizing expe.cled monetarily vaZut  EMV!. The ENV of a
gamble that results in a payoff of $0 or $100 with equal proba-

bilities of 1/2 is:

1/2 �! +1/2 �00! =$50

In general, one obtains the EMV of a gamble with several pos-
sible outcomes by multiplying each cash outcome by its proba-

bility and summing these products over all possible outcomes.

Thus, if there are N possible outcomes and the nth outcome has a
cash value of x and the DM thinks its likelihood is p , the EMVn. n'
of this gamble for this DM is

N

pm xm
n=l

An EMV'er is a person who, when faced with a number of gambles,
always desires to choose that gamble with highest EMV.

In Joe's case, there are two possible outcomes resulting

from buying the ship  +60,-100! with probabilities  .8,.2!
respectively. Hence the EMV associated with purchasing the

ship is:

.8�0K!+.2 -100K! = 28K

If he refuses to buy the ship, then he can assure himself an

outcome of 0. That is, with probability 1.0 the result will

be zero. Thus, the EMV associated with not buying the ship is:

l. 0  OK! = OK



The EMV'er by definition acts so as to maximize expected mone-

tary value. In this case, the EMV maximizing choice is to buy

the ship. The decision consistent with expected monetary value

decision-making is indicated by drawing a solid arrowhead on

the 3 branch leading from the decision node. We then write his

expected gain from taking that branch above the node associated

with the decision.

It is very important to realize that the adjective

"expected" in the term expected value does not have its every-

day meaning. An expected value of +28,000 does not mean that

the DM expects to obtain the amount 28,000 dollars. In this

case, purchase implies Joe will gain either $60,000 or lose

$100,000, neither of which amounts is very close to $28,000.

Expected value is merely the average of the dollar outcomes

weighted by the likelihood of the outcome.

1.3 THE STRANGER APPEARS

As a result of this analysis of the problem, Joe feels a

little better than he did before. He has forsaken all hope of

$100K monetary gain and is coming around to the idea that it

might be wise to settle for an expected gain of $28K. However,

just when he is becoming reconciled to the forces of fate, a

stranger approaches him and says, "I couldn't help overhearing

you talking to yourself about your problems. Perhaps 1 can help

you. You see I worked in the yard where the substandard ships

or Lemons as you call them were made. I can tell you whether

the ship sitting on this berth is a Lemon simply by looking

at the serial number." Joe can hardly believe his ears. At

last a possibility of finding out whether the ship is a Lemon

before buying it..

Joe looks at the man, decides he has an honest appearance,

and says, "You are just the kind of help I need. Let's go over

to the ship and take a look at it. I am eager to find. out

whether or not it is a good deal." The stranger smiles and re-

plies, "I am sure you are, but you can hardly expect me to go

to all the trouble of examining the ship and getting myself

12



dirty without some financial consideration." At first Joe is
angry about the stranger's mercenary attitude, but then he

remembers he is not in a position to throw away potentially

useful information if it can be obtained at a reasonable price.

He asks for and is granted. a few moments to think over the

stranger's offer.

The problem is this: how much is Joe willing to pay the

stranger for his information? He reasons as follows. On the

basis of the stranger's appearance and manner, Joe decides that

he can be trusted in his claim of being able to distinguish

peaches from lemons. If the stranger reports that the ship is
a peach, then Joe will buy it and make a net gain of $60K. If
the stranger says it is a lemon, then Joe will refuse to buy it

and make nothing. Joe's probability that the stranger will

find a peach is 0.8 and the probability of his finding a lemon

is 0.2. Consequently, Joe's expected gain before receiving

the information is 0.8�0!+.2�!=$48K. Therefore, is the in-

formation worth $48K? No, not to an ZNV'er because, even with-

out it, Joe can obtain an ENV of $28K according to our original

analysis. Hence, the net value of the stranger's information
to Joe is $2QK. That is, Joe as an expected-value decision-

maker should be willing to pay any amount up to $20K for the

stranger's advice.

We shall call this quantity the expected value of per-

fect information or the EVPI. It represents the maximum price

that an ENV'er should pay for experimental results when pricing

a decision under uncertainty. This follows since no partial

knowledge could ever be worth more than a report of the actual

outcome of Nature's process.

1 . 4 THE GUARANTEE

Joe now decides to offer the stranger $15K in hopes of

getting the information at a bargain price. However, when he

confronts the stranger with this offer, the stranger replies

that he couldn't consider the job for less than $25,000 and

13



suggests that Joe think it over for a while. Joe is upset by
this turn of events, but quickly regains his composure. He

thinks to himself that the real reason for his difficulties is

that he doesn't have a wide enough range of alternatives from

which. to select an appropriate action. Suddenly he has a brain-
storm--maybe he can get the broker to give him a guarantee on.
the shipl He inquires of the broker whether he would be willing
to underwrite the ship's repair bills. The broker says, "Yes,
there is a guarantee plan, it costs $60,000 and covers 50% of
repair cost." Joe thinks fast and replies, "You certainly
don't have much confidence in this ship. If I bought the ship

and it turned out to be a lemon, I could go broke even on my

50%." The broker says, "All right, just for you I will include

an anti-lemon feature in the guarantee. If total repairs on

the ship cost you $100,000 or more, 1 will pay for an.p of the
repairs. How is that for meeting a customer halfway?" Joe says,
"That's fine, and now I would like to think things over again."

At this point Joe realizes that he has a new decision tree.
It is shown in Figure 1.3. This tree differs from the prece-

ding one because there are now three possible actions at the
decision node. The new alternative is to buy the ship with the

guarantee; that is, to hedge against the possibility of getting
.Mnma. b:-. ~rding <5S.gM. ='shia ajP<eMi:i .'J- -~~con S:he

svmbo ~ G. We see that.. although the ship mighti shill turn out

to be a lemon if thx.'s alternat=ve is followed, the costs asso-

ciated with the two outcomes are strikingly different from. what

they are in the case where the ship is bought without such a

guarantee.

Let us examine Figure 1.3 in some detail. The figures writ-
ten below each branch are again the gain or loss associated with

traversing that branch. The numbers on the tips are the total
expected monetary value of the chain of branches leading to that

tip.

The expected value of the nodes B and R are calculated as

14



60,000
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28

40,000

JOE'S DECISION TREE INCLUDING GUARANTEE POSSIBILITY

the fact that our initial gain from buying the ship with the

guarantee is only $40K because the guarantee itself costs $60K.
The value of -$20K over the P branch following the G action

arises because even a peach will require one repair at. a cost

of $40K, but half of this $40K will be paid by the guarantee.

The 0 under the corresponding L branch is a result of the anti-

lemon feature of the guarantee. Since the cost of repairs on

a lemon will exceed $100K, there will be no charge for repairs.

Thus, the gain associated with buying the ship with a guarantee

and having it turn out to be a peach is $20K, while the gain if
it turns out to be a lemon is $40K. The probabilities of these

is not consistent with the objective we have assumed for Joe=

maximum expected. monetary value. Under this objective, the

choice should. once more be to buy the ship without any protec-

tion, as is indicated, by the heavy arrowhead on the B branch.

15

two events have values of 0.8 and 0.2 respectively. Hence, the

EMV from buying the ship with the guarantee is 0.8�0! +0.2�0!
'zlmr ah. >-3.'K -ZW~. maw' M 6;>iiSb

buying the ship without the guarantee, buying the guarantee



At this point our knowledgeable stranger returns and once
more offers his advice-for-a-price. Has the advent of the

guarantee changed what Joe should pay? Let's find out. If the
information is bought, the stranger will find that the ship is
a peach with probability 0.8. If a peach is reported, then Joe
will buy it without a guarantee and obtain a net gain of $60K.
Nith probability 0.2 the stranger will discover a lemon. In
this case, however, Joe is best advised not to refuse the ship
and make nothing as he did before, but rather to buy it with
the guarantee. As the number on the tip of the branch GL in
Figure 1.3 indicates, by taking this action he will obtain a
net gain of $40K. Thus, the ENV associated with buying the
ship with the stranger's information is 0.8�0!+0.2�0!=$56K.
Since Joe can obtain an EMV of $28K anyway by buying the ship

without this information, the net value of the additional in-

formation to him is $28K.

It may at first seem strange that the expected value of
perfect information, or EVPI, should increase simply because an
alternative has been added to those already available to Joe.

However, such an increase has taken place as a result of the

fact that Joe is in a better position to make use of informa-

tion that the ship is a lemon than he was previously. Now the
stranger's asking price of $25K for the perfect information seems
quite reasonable. Joe is about to purchase the information when
he has another brainstorm. He knows that perfect information is
worth $28,000 to him, and so he reasons that if he can get par-

tial information at a price sufficiently lower than $28,000 he

may be able to increase his ENV.

1.5 THE YARD'S TEST PLANS

Joe calls a friend at. a nearby yard to ask what kind of

tests could be performed and how much they would cost. The
yardman says he is very busy and that he can only do at the
most one or two tests on the ship in the time available. He

then supplies Joe with the following test alternatives:

16



He can test the steering system alone at a cost

of $9,000;

He can test two systems--the fuel and electrical

systems � for a total cost of $13,000;

3. He can perform a two-test sequence in which Joe

will be able to authorize the second test. after

the result of the first test is known. Under this

alternative, the yard will test the turbine at a

cost of $10,000, report the outcome of the test to

Joe, and then proceed to check the reduction gears

at an additional cost of $4,000, if it is requested

to do so.

All the tests will find a defect in each system tested

if a defect, exists. The test. alternatives are summarized in

Table 1.1 including the possibility of no testing.

Joe looks over these test alternatives and decides that

TABLE 1.1

THE TEST ALTERNATIVES

Test Cost

TO Perform no test

Test steering system 9,000

T2 Test fuel and electrical
systems � systems! 13,000

T3 Test turbine with option
on testing gear

10,000
 optional!
+ 4,000

it is worthwhile to at least consider testing because the cost.

of each of these tests is significantly less than the $28,000

expected value of perfect information. Xf all tests had cost

over $28K, then there would be no point in considering a test-

ing program because each test will generally provide only par-

tial information, and even perfect information is worth a maxi-

mum of $28K. However, it is still not clear which test, if any,

should be performed. Furthermore, Joe would like to know the



value of the stranger's information under these new circum-
stances. These problems will be approached by drawing a new
decision tree for Joe. The general structure of the decision
tree is shown in Figure 1.4.

The tree is a little complicated, so we shall explain it
in. steps. Notice that the first decision to be made is which
of the four test options--TO, Tl, T2, T3--to follow. If
some tests are made, the yard will report the results, and then
a decision about buying the ship must be made. If the test T
is used, then there will also be a step in which the yard is
advised whether or not to continue the test procedure. Let us
now examine the situation resulting from each test in more

detail.

If test To is selected, then no physical test is made and
Joe is required to make a decision about buying the ship imme-
diately. The decision tree from this point. on looks just like
that of Figure l.3. In fact, the numbers that appear in Figure
l.3 have been reproduced exactly in Figure l.4 with the excep-
tion that only the numbers on the tips of the branches have
been copied because they are sufficient for our purposes. In-
deed, a little reflection will reveal that, regardless of the
test program we follow, we must, end up with a decision tree
like that of Figure 1.3. However, although the numbers on the
tips of the branches will be the same in all cases, the proba-
bilities to be written on the branches will differ in each

case. The probability of the final outcome of a peach or a
lemon will generally depend on the findings of the experimental
program up to the time the decision on buying the ship must. be
made. For example, if two defects have been found, then Joe
can be absolutely sure that the ship is a lemon.

We see that what is now required is a mechanism that will
give for each possible result of the experimental program the
appropriate probabilities for the ultimate outcome of a peach
and a lemon.

3.8
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To develop such a mechanism, let us concentrate on that
part of the tree associated with test plan Tl which we have
reproduced below. For now, ignore the probabilities which have
been assigned to various chance events in this tree.

Pr P~D1! = .4 40< p

32

F I GURZ 1-5

Dl denotes the event "a defect is discovered on the first  in
this case, the only! test" and Dl denotes the complementary
event "no defect discovered on the first test." Thus, this por-

tion of the tree indicates that, if Joe decides on Tl, he will
pay out $9,000, then Nature will determine either D or D',

after which Joe will be faced with the Buy, Guarantee, or

Refuse option, and finally Nature will choose either a peach
or a lemon. Since we already know the rewards associated with

each branch, this subtree is complete except for the probabi-

jities to be assigned to the branches emanating from the chance

nodes.

ln the case of the no-test option the assignments were

obvious. If Joe believed the broker knew what he was talking

about, then Pr P!=.8 and Pr L!=.2. Now things are a little

20



is: by how much should these probabilities change?
in order to compare test option Tl with the other
tests, we will need to assign probabilities to the
emanating from node Tl. In short, in order to evalu-
subtree, we need to know the following six quantities:

question

Further,

possible

branches

ate this

a! The likelihood of a peach given that the test has
revealed a defect, denoted Pr P~Dl! and read "the
conditional probability of event P given that event
D has occurred" or usually "the conditional proba-

1
bility of P given. Dl,"

b} The conditional probability of a lemon given that
the test revealed a defect, or Pr L DI!,

c} The conditional probability of a peach given that
the test revealed no defect, or Pr PIDI!,

d! The conditional probability of a lemon given that
the test revealed no defect, or Pr L~DI!,

e! The probability that test option Tl will discover a
defect or Pr Dl!,

f! That probability that test option Tl will reveal na
defect on Pr Dl!.

What information does Joe have which might enable him to

compute these probabilities? Well, he already knows the fol-
lowing six probabilities:

1. Joe's probability the ship is a peach before any

testing, Pr P!=.8.

2. The probability the ship is a lemon before any

testing, Pr L!=.2.

3. The conditional probability that the test will re-

veal a defect if the ship is a peach, Pr D1 P!=.1*.

*We are tacitly assuming that the ship's defects are equally
likely to occur in each of the ten systems.

21

more complicated. Suppose Joe chooses Tl and the test reveals
a defect, i. e., Joe is at node Dl on the subtree. Presumably,
the information he has obtained, if it is worth anything at

all, should increase his likelihood that the ship is a lemon
and decrease the likelihood that the ship is a peach. The



How can we use these probabilities to obtain the probabi-

lities that Joe needs? Let's start with the probability of a

defect, Pr D !. Joe realizes there are two mutually exclusive
ways he can get a defect. Either the ship is a peach and the
test happens to hit. on the single defective system which occur-
rence is represented by the compound event PD  remember this
is read 'P and Dl! or the ship is a lemon and we happen to
test one of the six defective systems which is the event LD1.
In other words, a long-winded way of saying the event Dl is
PDl+LDl   read ' P and D 1 or L and D 1 ! . The situation is repre-
sented by the following diagram.

Now Joe doesn't know what, the probability of the event Dl

is but he does have some ideas concerning the probability of

the events PDl  the area that is both cross hatched and dotted
in the diagram! and LDl  the area that is both cross hatched
and crossed. in the diagram!. He reasons "the probability of

a peach is .8. If the ship is a peach, the chances of a defect
are 1 in 10  or, more concisely, Pr DlIP!=.1!. Hence, to get
both a peach and a defect, I have to survive, first, a .8 gamble
and then a .1 gamble. Ny chances of doing that are .8 x .1

or .08. The probability of PD1 is .08."

Joe has deduced that the following relations hold between

22

4. The conditional probability that

reveal a defect if the ship is a

5. The conditional probability that

a defect if the ship is a lemon,

6. The conditional probability that

reveal a defect if the ship is a

the test will not

peach, Pr D1~P!=.9.
the test will reveal

Pr  Dl ~ L! =.6.
the test will not

lem», Pr DllL!=-4.



the various events P, Dl and PDL..

Pr  PDl! = Pr  P! Pr  Dl 1 P!

probabi-

the

We shall call this the Product Rule. It says the

lity of the intersection of any two events is equal to

probability of one of the events times the conditional

bility of the other event given the first. By similar

proba-

reasoning

Pr  LDl! = Pr  L! Pr  Dl ~ L!

.2 ' .6 = .l2.

exclusive. For example, he knows that the fact that his proba-

bility of the event C, "the g3 horse places  finishes second

or better!" is .5 and his probability of the event D, "the 44

horse places" is also .5, does ~oX mean that his probability of

the event "either the g3 or the 44 horse places" is 1.0. In

this case, the two events C and D are not mutually exclusive,

in which case the probabilities will not add.

Joe realizes he had better stop ruminating on his misspent

days at the horse track and get on with his problem. He needs

Pr  Dl! and he has Pr  PDL! and Pr  LDL! . But the events PDL and
LD are mutually exclusive, since the first requires that the

ship be a peach and the second requires that the ship be a

lemon. Hence,
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Of course, Joe is not directly interested in Pr PDj! or
Pr LDL! but rather the probability of simply D ,Pr DL! .
However, Joe has noticed from his horse-racing days that one of

the nice things about expressing likelihoods in the form of

probabilities is that if one has two events, for example, the

event. A might. be "the g3 horse wins a certain race" and the

event B might be "the 44 horse wins this race," which cannot

both occur simultaneously, then the probability of the compound

event "either A or B or both happen" which we have denoted A+B

 read 'A or B',! is equal to the sum of the probabilities of the

individual events. Joe realizes that in running probabilities

in this manner he must be careful to deal only with events

which cannot both occur, events which in our terms are mutually



Pr  PDj+LD1! = Pr  PD1 > +Pr  LD] !

but "ship is a peach and system tested is defective or ship
a lemon and system tested is defective" is just a long-

winded way of saying "system tested is defective." That is,
the event PD1+LD1 equals the event Dl. This is obvious from
the diagram on page l-23. In summary,

Pr  Dl! = Pr  PDl! + Pr  LDl!

We can put this expression in terms of the probabilities that
Joe was originally given by substituting the Product Rule into
both probabilities on the right-hand side

Pr  Dl! = Pr  Dl I P ! Pr  P! +Pr  Dl I L! Pr  L!
 -1!  -8!+ -6! -  -2! = ~ ~

We shall have occasion to use this simple result, which we will
call the Sum Rule, many times in what follows.

By a similar argument, the probability of the event "no
defect on first system tested.,' Dl is

Pr  Dl! = Pr  Dl   P! Pr  P! +Pr  Dl ~ L! Pr  L!
 -9! ~   ~ 8!+  ~ 4! ~   ~ 2! = ~ 8

Of course, since Dl+Dl U and Dl and Dl are mutually exclusive,
we could have obtained the probability of Dl directly from

Pr D1! = 1.0 � Pr D1!

with the same result.

Well, Joe now has Pr D1! and
the proper places on Figure 1.5.

r  PlD1!»d Pr  LID
Examining his Venn diagram,

Prr D1! and he enters them into
He still needs Pr P~D1!,
Let us work on Pr P~D1!.



Joe says to himself. "Having observed a defect, I am certain that

Dl has occurred. My new probability on the event D is 1.0 and
the new probability on D is 0.0. It is as if D becomes the

new universal event and I throw away everything outside D

have no information which would lead me to alter the relative

»  Dl IL! Pr  L!
1

I

p P Dp!Pr� IP!Pr P! 9! ~  8! .9
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probabilities of the events within Dl ~ Therefore, in order to
get my new probability on P, all I need to know is what percen-

tage of Dl is taken up by P. Well, that is simple; the total
area of Dl is .2 of which .08 is in P since D2P = .08. Hence,
in the new space, i.e., given Dl, the relative area of P is
.08/ 2 = .4. My chances of getting a peach after having observed

a defect, Pr P D1!, equals .4. Eureka."
Joe is justifiably proud of himself, but all that he has

really done is to rediscover the Product Rule. He has reasoned

that Pr  P  D ! = Pr  PD1!/Pr  Dl!
which is just a slightly altered form of the Product Rule. By

substituting the Vroduct Rule and the Sum Rule into the righthand

side of this expression, we obtain

Pr  Dl I P! Pr  P!P  P~Dl!- Pr P Pr P +Pr Dl L Pr L!
which is known as Hayes Rule. The significance of Hayes Rule is

that it allows the decision-maker to flip the events in conditional

probabilities which is just what he needs if he is to interpret

correctly the effect of less than perfect information. The reason

is that the DM usually knows the probability of each experimental

result as a function of the underlying state of Nature, that is,

probabilities such as P Dl~P!. But what he needs to know to evaluate
his tree are the probabilities of the underlying state of Nature

as a function of the experimental results, probabilities such as

Pr P~D1! Joe is beside himself. By similar reasoning he quickly
finds



Pr D11»Pr L!   4! .  ,!

Notice the Pr  P ~ D]! and Pr  L~ Dl! sum to 1.00, as they must for
after we have observed a defect the ship must still be either a

peach or a lemon. Similarly for Pr PIDl! and Pr LIDl!. Notice
also that this test will change Joe's feelings about his chances

quite significantly. If it reveals a defect, the probability
of a lemon jumps from .2 to .6. If it reveals no defect, the
probability of a lemon drops to .l.

We now have all the probabilities we need for assignment to
the subtree associated with test option Tl. We have made these
assignments in Figure 1.5. Notice that the sum of the probabi-
lities on the branches emanating from any chance node is 1.0, as

they must, for we constructed the tree in such a way that at
any chance node, Nature must choose exactly one of the branches.

Having assigned these probabilities we are in a position
to begin folding back the subtree of Figure 1.5. Let's start
with the upper right-hand corner of the subtree. Here, Joe
buys the ship without a guarantee after observing a defect in
the system tested. His probability of a peach is .4 and of a
lemon is .6. Hence, the ENV associated with this experimental
outcome and decision is  .4!�0K!+.6 -100K!=-36K. We have as-

signed this value to the corresponding node in Figure 1.5. If
Joe buys with with a guarantee after observing a defect, the
same probabilities will apply but now the monetary outcomes
are 20K and 40K respectively. Thus, the ENV of this choice is
+32K. As before, the EMV of the refusal option is 0. We are now
in a position to eva.luate the decision at node Dl. Clearly,
the ENV maximizing option, having observed a defect on a single
test, is to buy with guarantee, which option has a value of
32K. We have associated this value with node Dl.

We can handle the Dl branch of Tl similarly, only now the
probability of a peach is .9 and that of a lemon is .1. Hence,
having observed no defect on the system tested the EMV of buying
the ship with guarantee is  .9!�0K+ .1!�0K!=22K, and the ENV
of refusal is still 0. Zf Joe does not observe a defect on
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the system tested, he will maximize his ENV by buying the ship
without a guarantee and the value of this decision has been

associated with its node.

There is but one step remaining in the analysis of test

option T . If the yard reports a defect, Joe expects to gain
$32,000. If it reports no defect, then Joe expects to gain

$44K. These two events happen with probability 0.2 and 0.8,

respectively, according to the earlier calculations. Hence,

the expected net gain before the results of the test are known,

but after the test has been paid for, is 0.2�2!+0.8�4!=$41,600.

Since Joe must pay the yard $9,000 to reach this position, his

expected earnings from test Tl, including the payment to the
yard are $4l,600-$9,000=$32,600. This number is entered at the

left of branch Tl to indicate the expected gain from following
this test. program. Since we have already calculated the ENV

of program TG to be $28,000, it is clear that Joe will increase
his ENV by proceeding with the test on the steering rather than

by making the purchase decision in the absence of this informa-

tion. By so doing he will increase his expected gain by $4,600.

Of course, it is still not proven that T] is the best test al-
ternative for an EMV'er to follow--we have only shown that, it is

better than Tp. lt remains to investigate T2 and T3.

Before we do so, however, let us return once more to the

concept of the value of perfect information. We have already

shown that the partial information supplied by option Tl is more
valuable than its cost. How has this revelation affected our

evaluation of the stranger's information? Before the test al-

ternatives were introduced, Joe had calculated that the ex-

pected value of perfect information was $28,000. As you re-

call, this figure was determined by calculating first the

amount of money Joe could make if the perfect information was

available to him  $56,000! and then subtracting from this quan-

tity the amount he could expect to earn in the absence of this

information  $28,000!; thus, EVPI equaled $56,000-$28,000.

Now what has changed in these calculations? $56,000, the EMV
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associated with perfect information has remained unchanged since
the introduction of the guarantee plan. However, Joe's expec-

Cation without the stranger's information has been increased
from $28,000 to $33,600. Hence, the expected value of perfect
information has been lowered to $56,000-$32,400 = $23,400.

The value of perfect information at each point in the tree
is shown in Figure 1.4 in the ovals at pertinent nodes. In
every case. the EVPI ia calculated a~mplg bg au.bfrcacX~ng She
expected eaan~nga aX each node.  <rom Joe'a FMV j oaf be$oae. ob-
4aanxng Xbe pe<$ecZ in o<mali on. At the two nodes that begin
and end branch Tl the result of the test is not known and so
the expected gain using perfect information is still $56,000.
Thus, the node to the right of branch Tl bears the ZVPI $14,000
since $56,000-$41,600=$14,400. Perfect information is worth
$9,000 less than it was to the right of branch Tl because the
payment to the yard is no longer variable. It is a sunk cost.

The calculation of the value of perfect information is

performed in the same way when the test results are known, but,
in this case, the expected gain from using the perfect informa-
tion is different. Consider the situation where a defect has

been reported. Joe knows that if the ship is a peach he should
buy it without the guarantee and make $60,000 and that if it
is a lemon he should buy it with a guarantee and make $40,000.

Now that a defect has been reported, the probabilities of a

peach and a lemon have changed to 0.4 and 0.6 respectively.
Thus, the expected gain using perfect information is now
0.4�0K!+0.6�0K!=$48,000. It is from this quantity that the
expected value of node T1D] $32,000 must be subtracted in order
to obtain the EVPI of $16,000 entered in the oval above node

T1D1'
Similarly, we see that if no defect had been reported, the

probabilities of peach and lemon would be 0.9 and 0.1, and the
expected gain of using perfect information would be 0 ' 9�0!+
0-1�0!=$58,000. When we subtract, the $44K value of node TlD1,
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we obtain the S14,000 figure for the EVPI that is pertinent to

that node.

Let us now move forward to an analysis of test option T2.
En this case, as you will recall, two systems on the ship--the

fuel and electrical systems--are subjected to test and then

the results of both tests are reported to Joe. The possible

reports are that, 2, 1, or 0 defects were found. These three

events are represented by the three branches DlD2, DlD2+D1D2
and D1D2 that are drawn to the right of node T3 in the tree of
Figure 1.4. When the yard's report is known, Joe must make a deci-
sion on buying the ship, using a decision tree similar to that
shown in Figure 1.3. The expected earnings at the tips of the

tree remain the same, but once more we require a new assignment

of the ultimate probabilities of a peach and a lemon as a re-

sult of the shipyard's report. The probabilities necessary

1 2 ' P 1 2 Dl 2 ' r l 2' «PID1 2'
Pr PID1 2 1D2 ' r LlDl 2 Dl 2 ' Pr PIDlD2 and Pr L! lD2

We could obtain these probabilities from the probabilities

Me already know by proper application of the Product Rule and

the Sum Rule as we did. to Tl. However, since the number of
probabilities involved is beginning to mount up, it may pay us

to be a little more systematic in keeping track of these various

probabilities. As a device for structuring our probabilistic

calculations, let us introduce Nature's tree.

We have seen that Hayes Rule is a method for flipping the

events in conditional probabilities. In a similar vein, we

might flip the order in which Nature makes her choices at chance

nodes. For example, in the problem at hand, we might regard

Nature as choosing either a peach or a lemon and then making

her choices with respect to the test results. A tree describing

this sequence- of moves i � shown in Figure ~.6. We shaII call

such a flipped. tree, Nature's tree.

All nodes in Nature's tree are chance nodes. In the prob-

lem at hand, the tree consists of three tiers of branches. The
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first node represents Nature's choice of a peach or a lemon,

the second set of nodes represents Nature's choice of a defect

or not on the first system tested and the third set of nodes
represents Nature's choice of a defect or not, on the second
system tested. When Nature's choices are arranged in this
order it is an easy matter to assign probabilities to the

various branches in Figure l.6.

The unconditional probability of Nature's choosing a peach

is .8 and a lemon is .2. These probabilities have been assigned
to the branches emanating from the leftmost node. Suppose the

ship has turned. out to be a peach. Then, we are at node P.
Now suppose that one major system of the ship is tested. Since
the ship is a peach, there is probability 1 in lO, or O.l that
the one defective system will be checked and found defective;

thus, Pr Dl~P!=.l. By the Product Rule, the probability of
both P and D , the probability of getting to node PD is

PR PDl!=Pr P! ~ Pr Dl~P!=0.08. In other words, the Product Rule
says that the probability of getting to a node is the product
of the branch probabilities leading to that node. Suppose that
a second test on another system is now performed. If we are

at node PDl, then the only defective system in the ship has
already been discovered and there is probability 0 of finding
another defect and reaching node PDlD2. Under these circumstances,
we shall be certain to proceed to node PDlD2. By applying the
Product, Rule twice, the probability of the event PDlD2 is deter:�
mined by multiplying together the probabilities on all the
branches that lead to that tip of the tree. Thus,

Pr <PDlD2! =Pr <D2 I DlP! Pr  Dl IP! 'Pr <P! and Pr <PDlD2! =Pr <D2 I DlP! ~
 D I ! ~ P <P!.

If the ship were a peach, but no defect had been found on
the first test, then we would be at node PDl. If now a second
test is performed, it will yield a defect with the probability
that the system tested is the one defective system in the re-
maining nine or 1/9. Of course, the probability of finding no
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defect in this situation is then 8/9. The probabilities P  PD1D ! =1 2

0.08 and P  PD1D2! = 0.64 can then be calculated by multiplying
the relevant branch probabilities.

If Nature selects a lemon initially, then the same sort of

reasoning applies. The probability of finding a defect in the
first test on a lemon is equal to the chance of testing one of

the six defective systems out of the 10 systems on the ship, or
0 ' 6. If one defect has been found in a lemon, then the probabi-

lity of finding another is the chance that one of the 5 defective
systems among the remaining 9 systems will be inspected, or 5/9.
If, on the other hand, no defect is found in the first test on

a lemon, then the probability of finding one during the second.
test. is the chance of testing one of the 6 defective systems

among the 9 systems remaining, or 2/3. The probabilities of
all final outcomes pertaining to the lemon branch of the tree

are then computed and written on the tips of the branches.

Figure 1.6 contains all the information necessary to answer any

question about the probabilistic structure of the decision

process.

Ne can best see this by returning at this point to our dis-

cussion of the test alternative T2 in Figure 1.4. For example,
the probabilities Pr D1D2!, Pr D1D2+DlD2! and Pr D1D2! can be
obtained by simply adding the tip probabilities in Figure 1.6
which correspond to the desired event, i.e., by using the Sum
Rule. For example, the event DlD2 is the same as the event
'D1D2 and a peach or D1D2 and a lemon'. The probabilities
corresponding to the latter two events are Pr D1D2P!=0 and
Pr D D L!=.067. In short, by the Sum Rule

Pr D1D2!=Pr D1D2P!+Pr DlD2L!=0+.067=.067

Similarly,

Pr DlD2+D1D2 1 2 r 1 2 + r 1 2 Dl 2

=.08+.053+.08+.053=.266

and

P  Dl'2!=P. D1D2'!'Pr DlD2L!=.64+.027=.677
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With these probabilities and the tip probabilities, it is a

simple matter to obtain the desired conditional probabilities
by solving for the conditional probability in the Product. Rule.

For example,

Pr  P I D ' D ' ! =Pr  D ' D'P! /Pr  D ' D ' !

=.64/.667=.96

The probability of a lemon given DlD is equal to 1.0 minus
this probability or Pr LIDlD2! 04. Similarly,

Pr PIDlD2 � � Pr DlD2P!/Pr D1D2 =0/.067=0

Pr PDlD2!+Pr PD1Dl!
P«PID,D2+D,' 2! Pr D D +D D

1 2 1 2

.08+.08
.266

And, hence, Pr LID1D2 =1.0-0.=1.0 and Pr LIDlD2+D1D2 1'0 '6 '4
Thus, we see that after Joe has committed himself to test

plan T2, the probabilities that the yard will report 2, 1, or 0
defects are .067, .266, and .667 respectively. These numbers

have been entered in Figure 1.4 on the three branches leaving

chance node T2. If two defects are reported, Pr P~DlD2! shows
that Joe will make his decision with the satisfying but disap-

pointing knowledge that the ship is certain to be a lemon
This information is indicated on the tree by the 0 and 1 entered

on the branches P and L that originate in chance nodes TlDlD2B,
T2D1D2G, and T3DlD2R. The El4lV associated with each of the de-
cisions B, G, and R are -100,000, 40,000 and 0. Consequently,
Joe will maximize his ZMV by buying the ship with the guarantee,

even though it is a lemon, and thus gain $40K. This preferred
decision is shown by the solid arrowhead on the branch G fol-
lowing node T2D1D2, the gain of $40,000 is recorded above that
node.

The situation when only one defect is reported is very

similar. In this case, we observe from Pr P~D1D2+DID2! that the
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probabilities of a peach and a lemon are 0.6 and 0.4. These

probabilities appear on the P and L branches at the ends of the

sub-tree that follows node T2 D] D2+Dj'D2! ~ The EMU of the three
actions B, G, and R are 0.6�0!+0.4 -l00! =$4,000;0.6 �0!+0.4�0!=

$28,000 and $0. Once more, the highest EMV will result if Joe

buys the ship with the guarantee Note that he does this even

though the ship is more likely to be a peach than a lemon. Again

we record the expected gain of $28,000 over the decision node

and indicate the preferred decision with a solid arrowhead.

If no defects are reported, the ship is almost certain to

be a peach; there is only a four percent chance of its being

a lemon. When we compute the expected gain of the three deci-

sions following node T DlD2, using the probability 0.96 for a
peach and 0.04 for a lemon, we find that buying the ship without

a guarantee has an EMV of $53,000, buying it with a guarantee

has an EMV of $20,000, and not buying it at all has an EMV of 0

Thus, Joe will maximize his EMV by buying the ship without the

guarantee, as represented by the solid arrowhead on the 3 branch

following node T2DlD2 and by the $53,600 entered over that node.

We have now calculated the EMV maximizing decision and the

associated expected earnings for each possible shipyard report

under test plan T . As we know, chance determines the actual

reporting, but we also have learned the probabilities of the

yard's reporting 2, l, or 0 defects, and have entered them in

the decision tree. The expected gain to Joe when he is waiting

to learn the test results is thus 0.067�0K!+0.226�8K!+

0.667�3,600! or $45,870. Of course, in order to reach a situ-

ation with this expected value, Joe had to pay out $13,000.

We might at this point examine once again the expected

value of the perfect information offered by the stranger. As

we found earlier, this quantity can be calculated at each node

of the decision tree simply by subtracting from the expected

earnings with perfect information the expected earnings which

we have assigned to that node. Accordingly, since the expected

gain using perfect information is still $56K before the test
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results are known, the value of perfect information when Joe

has decided to use test T2 is $23,130  i.e., $56,000-$32,870!
before he has paid the yard, and $10,130  i.e., $56,000-$45,870!
after the yard has received its $13,000.

However, after the test results have been reported, the
expected gain using perfect information is different from
$56,000. Remember that Joe can make a profit of $60K if he
knows the ship is a peach, and of $40K if he knows it is a
lemon. From our tree we see that the pair  Pr P!, Pr I!! takes
on the values  O,l!, �.6,0.4! and �.96,0.04! according to
whether 2, 1, or 0 defects were discovered. Joe's expected
gain using perfect information is thus $40,000, $53,000, or
$59,200, depending on the defect situation. Since we have
already calculated the expected values of these states to be
$40,000, $28,000, and $53,600 without perfect information,
the EVPl's for them must be $0, $24,000, and $5,600 respec-

tively.

An observation of particular importance may be based on
these numbers: although we would expect the amount Joe would
be willing to pay the stranger for his perfect information to
decrease after he is committed to a test plan, it is not neces-

sary for this situation to obtain for any experimental outcome,
but only on the average Thus, after Joe has decided to follow
test plan T2, he established that the EVP1 to him at that point
is only $23,130. However, if the yard should report that he
had found exactly one defect in the ship, Joe now notices that
the EVPI has increased to $24,000, a net gain of $870. This

means that, if Joe had decided on T2 and the stranger's price
for his information was $23,500, Joe would refuse the informa-

tion and go ahead with the test, but then willingly pay $24,000
for the same information if the yard reports only one defect.

The result is really not too surprising when we realize
that Joe had already considered the chance of being placed in
a situation where the expected value of perfect information is
$24,000 when he made his decision at node T2. When Joe con-
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tracted for test plan T2, he had to consider how every possible
...cn~tc.ome of the te~t--2 1 or. A Affects--would affect his state

of knowledge about the type of ship in the yard. If no defeats
were found., then Joe would be very confident that the ship is

a peach and would be willing to pay only $5,600 to remove his
remaining uncertainty. If two defects were found, then the

ship is surely a lemon and the stranger cannot tell Joe anything
of the value. However, if the yard reports one defect, then

Joe does not expect to make any more money from this point into
the future than he would have made if no tests whatever had been

performed--$28,000. It is important to note that the value of
perfect information is $24,000 in this situation rather than
the $28,000 figure applicable in the absence of tests. This
difference is, of course, due to the fact that the probability

that the stranger will discover that the ship is a peach has faller
from 0.8 to 0.6. In short, although the expected value of perfect

information cannot increase on an average value basis in such

trees, it is possible for it to increase for some of the chance

outcomes.

Now let us turn to the evaluation of test plan T3. Under
this option the turbine is tested for $10,000; when the outcome
of this test is reported, it is possible to have the yard test

the reduction gear for an additional cost of $4,000. Such a
test procedure is representative of a large class of experimen-
tal plans called sequential tests. Such processes are charac-
terized by the option to decide whether or not to continue testing
after the results of the initial tests are known.

The decision tree pertinent to T3 is shown in Figure 1.4.
The development of this tree is once more most easily understood
by considering the chronological sequence of the decisions
that must be made and their outcomes. The payment of $10,000

to initiate this test plan is indicated by a -10K under the

branch T3. The next event that will occur is the report of the
yardman about whether he found a defect in the turbine. Thus,

we establish a chance point that generates branches Dl and Dl.
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Regardless of whether or not a defect has been found, Joe must

make a decision on the continuation of the test. His two pos-

sible actions--continue on to test the reduction gear and stop

testing--are shown by the two branches named CONTINUE and STOP

that leave decision nodes T3Dl and T3Dl. Both of the CONTINUE
branches are labeled -4000 to indicate the cost of requesting

the testing of the reduction gears.

Zf Joe decides to stop the testing program after hearing

the report on the turbine, he will have to make his final deci-
sion on buying the ship having only the information that either
a defect was or was not found.. But these two situations were

also encountered under test plan Tl after the yardman had made
his report. Since Joe finds himself in the same position, they

must have the same value to him.  Remember that the money paid

out for the performance of the test is a sunk cost at this

point and so does not affect the $uCvrce. expected earnings.!

Consequently, we can immediately enter in the tree at the tips

of the T3Dl STOP and T3Dl STOP branches the same values to be
found at. nodes T T and T D', $32,000 and $44,000 respectively.

The situation if Joe decides to continue testing after

hearing the yard's report on its first test is analogous but

not identical. If the CONTINUE option is followed, the next

event to take place is the report by the yard on whether it

found a defect on the second test. Thus, we create chance

points at the T3Dl CONTINUE and T3Dl
and D2 branches emanating from them.
the second report from the yard, our

in two tests 2, l, or 0 defects have

CONTINUE nodes and D2
However, when we receive

total information is that

been found in the ship.

Ne have been able to evaluate the terminal points of T3
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Thus, we are in the same state as we were under test option T2
after the yard's report was known. The appropriate value of

 T4Dl CONTINUE D2! is, therefore, the value of  T3DlD2! or
40K; for T3Dl CONTINUE D2 and T3Dl CONTINUE D2 is 28K; and for
T3Dl CONTINUE D> it is $53,600. These numbers have been placed
at the pertinent tips of the T3 test plan tree.



tree by identifying them with nodes that. have been considered

earlier. Zt remains to place the relevant probabilities on the

chance nodes in this tree so that we can proceed to make a

judgment about the value of this option. Once more we find

that Nature's tree of Figure 1.6 supplies the probabilistic

information we require. The probabilities of the branches Dl
and. D' that leave node T have al'ready been computed in the

tree for test plan T ; they are 0.2 and 0.8. The only remaining

probabilities are Pr D2~D1! and Pr D2jD1! to go to the right of
node T3Dj CONTINUE and the probabilities Pr D2~D1! and Pr D2ID1!
to go in the analogous place on the Dl fork. Our task is again
simplified by the fact that the sum of all probabilities emer-

ging from a chance node must be 1. By rearrangement of the

Product Rule we can write:

2I 1 1 2 1
and

2 1 =P  D2D2 =Pr D2D2 /Pr D1!

From Figure 1.6 we find

Pr  D1D2! 1D2! +Pr LD1D2
Pr D ~D !�2 1 PP~PDL Pr  PDLD2 +Pr LD1D2 +Pr  LD1D2 +Pr PD1D2 +Pr  LD1D2

.067
~ 33

Pr  DlD2! Pr  PDlD2! + r  LDlD2!
Pr  DJD'!1 Pr PDP Pr  PD1D2 +Pr LD D2 +rP  PDL>D+ r PDLD2

.134/.8 = .166

Of course, most of the probabilities in this calculation were

computed earlier in the evaluation of test options T1 and T2.
However, their repetition at this time serves to emphasize the

basic role of Nature's tree. Finally, we have

Pr  D2 I D] ! =1 Pr  D2 I D] ! = ~ 667
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T2 and T3 are, respectively, $28,000, $32,600, $32,870, and
$32,660. Since plan T --that of testing two systems--has the

highest EMV, it is the one indicated by a solid arrowhead after

the initial decision node. However, the evidence of the tree

should be interpreted not to mean that T2 is the best test plan,
but rather that any of the plans Tl, T , T will be slightly
less than $5K better than the option of no testing on the aver-

age. The big payoff is not in the selection of a particular

test plan, but, rather in the decision to do some testing.

Let us review these test plans to show their operational

character. If Joe does no testing, he will buy the ship without

a guarantee. If he follows plan Tl, he will buy the ship with
the guarantee if a defect is found in the system tested, and
he will buy it without the guarantee if no defect is discovered.

Our evaluation of plan T2 shows that Joe should buy the ship
without. a guarantee only if no defects are found in the two

it with the guarantee otherwise. Fi-systems tested., and buy

nally, if T is chosen,

defect is discovered on

Joe should stop further testing if a

the first test and continue testing

is found in the first test on the tur-otherwise. If a defect

bine, then Joe should. buy the ship with a guarantee, as we see

from the decision at node T2Dl. However, if the turbine is
not defective, then, depending on whether the further test of

the gear does or does not reveal a defect, Joe will either buy

to pay anything for the privilege of making it. The tree

implies just this result.

We have now seen that after all the calculations have been
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the ship with or without a guarantee, respectively. This is
determined by locating the ultimate outcomes of the T3Dl CONTINUE
D2 and T3Dl CONTINUE D2 branches in the T2 tree. It is inter-
esting to note that the reason the nodes T3Dl CONTINUE and T Dl
STOP have the same value is that, even if the tests were con-

tinued at this point, Joe's decision would be to buy the ship

with a guarantee regardless of how the second test came out.

Since the test cannot affect the decision, it is not worthwhile



performed the final decision offers no real problem. Since
test plan T is most favorable by a small amount, Joe will
probably decide to follow it. The expected value of perfect
information is $23,130 when plan T2 is used; therefore, the
stranger's $25,000 price for this information once more looks

too high. Unless the price is lowered below $23,130, Joe should
proceed with having the fuel and electrical systems tested at

a cost of $13K. He will buy the ship without the guarantee

only if no defects are found, and with it otherwise. Joe's
expected gain from this plan of action is $32,870, an increase
of $4,870 over what he expected to make without considering

testing.

The stranger with the perfect information has witnessed
a good deal of vacillation in what Joe is willing to pay him.
The EVPI was $20K initially, $28K after the guarantee was

introduced, and $23,130 under test plan T2. From the stranger's
point of view, the guarantee was good news, but the test op-

tions were bad news.

Well, at last Joe is putting out to sea in his newly-

acquired C4, having used test plan T2 and abided by the results.
A most human question is: did he make a good decision or didn' t
he? The answer to this question does not depend at all on

whether his ship is actually a peach or a lemon. We must make

a distinction between a good decision and a good outcome. Joe

made a good decision because he based it on logic and his
available knowledge. Whether or not the outcome is good depends

on the vagaries of chance. Psychologically, perhaps the most

basic difference between decision-making under certainty and

decision-making under uncertainty is that in decision-making
under uncertainty you cannot judge a decision by its outcome.

Chapter 2 will attempt to place this contention on a solid
foundation.
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CHAPTER 2

BAYESIAN DECISION THEORY

Chapter 2 is divided into two parts. The first part
attempts to give a persuasive, non-formal presentation of the
Bayesian approach to decisions under uncertainty. The second
part is a reasonably complete statement of the axioms of deci-
sion theory and a proof that, if the DM accepts these axioms,
he can and indeed logically must analyze decisions under uncer-

tainty in the manner outlined in Part I if he is to be consis-
tent with these axioms. While Part II is hardly fun reading,

it is not difficult and we urge all readers, including those

unused to axiomatic reasoning, to wade through it, for it forms

the logical basis for all the hopefully more interesting marine

applications that follow.

PART I. A NON-FORMAL PRESENTATION OF DECISION THEORY

INTRODUCTION

Our study of Joe's dilemma begged two extremely important
questions which lie at the core of decision-making under uncer-

tainty.

l. In the real world, the likelihoods of future events

are not generally immediately available even if one eavesdrops
on one's broker's Question: how does one come up with the

needed probabilities when they are not handed to you?

2. In the real world, most people are not EMV'ers. If

all DM's were expected value decision-makers, we would have no

insurance companies. There would be little need for risk-

sharing institutions such as venture capital corporations or
offshore exploration syndicates. If oil companies or, for that

matter, any large shippers were expected value decision-makers,

there would be no point in obtaining their transportation re-

quirements from a mix of own ships, term charters and voyage
charters. People in general and marine investors and operators



in particular are rarely ENV'ers, and with good reason.* Our
job is to develop a methodology for obtaining decisions which
are consistent with the DM's values, not to tell him what these

values should be. Hence, there is no getting around the ques-

tion: what should one do if one is not an ENV'er?

*Expected value decision-making can lead to some rather strange
choices in many situations. Consider the case of the horse-
race fixer. Suppose there are N horses in a race and, due to
certain medical ministrations which you have accomplished, you
believe the probability of the nth horse's winning is p . The
betting public is not aware of your thoughtful care for the

n'

equines and bets the horses in such a way that the parimutual
odds  return for dollar invested in nth horse if it wins! is r
Supoose you are an ENV'er with total capital of C dollars. LeP
x >0 be the amount bet on the nth horse. Then your problem is
tB distribute all or a portion of your capital over the N horses
in such a way as to:

N

max ! p r x
 x ! n=l

subject to

N

x�<C
n=l

This simple constrained optimization problem belongs to a class
of problems known as linear programs. From basic linear pro-
gramming theory, one can easily show that the solution of this
problem is to bet all your capital on the horse with the highest
p r . This solution will maximize your expected winnings. It
aVsB has a very high probability of ruin. In fact, if one fol-
lows this strategy over a large number of races, your expected
value goes to infinity while the probability of ruin goes to l.
Not many people would want to follow such a strategy, especi-
ally when it can be shown that there exist other strategies
for distribution of your bets among the horses which will ef-
fect a positive expected rate of growth of your capital while
guaranteeing that you will never go broke. See reference 7.
Another historically famous situation in which EMVing leads to
rather strange results is the so-called St. Petersburg Paradox.
See reference 16.
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2. 1 RETURNING TO JOE ' S PROBLEM

Putting aside for the moment our nagging worries about

where do you get the probabilities, we will take the second

question first. Suppose now that our friend Joe falls into that

large class of people, the non-EMV'ers, people who would be de-

lighted, for example, to accept $48,000 in exchange for a 50-50

chance at $0 or $100,000. What can Joe salvage from his earlier

analysis? Nell, he can still draw the decision tree, put the

monetary payoffs at the terminal nodes and, since we are accep-

ting for the moment his probabilities, he can still assign the

same probabilities on the branches coming out of the chance

nodes. The trouble is that, if Joe is a non-ENV'er, he can no

longer fold the tree back taking expectations of the monetary

results at chance rrodes and maximizing ENV's at decision nodes.

At this point, our brilliant friend Joe has another of his

brainstorms. He says to himself, "The trouble is that the rea-

son why I am not indifferent between, say, 50,000 for sure and

a 50-50 chance at 0 or 100,000 dollars is that in some sense

obtaining 0 dollars is a lot worse relative to 50,000 than

getting l00,000 dollars is good. What I need is a way of
calibrating my differential feelings toward the different mone-

tary outcomes."

Now there are any number of ways Joe might calibrate his

feelings about, the monetary outcomes open to him. The way that

we are about to suggest will seem at first strange, but later

we will see it has a very surprising and important property.

Joe says to himself, "What I have got to do is ask myself

a set of questiorrs about how I feel about the various monetary

outcomes which a pa~orci might result from the courses of action

open to me." Reviewing these outcomes, he notes that they

range from a high +$60,000  no test, buy without guarantee and

ship is peach! to a low of -$114,000  use both tests of T , buy

without. guarantee, and ship is lemon!. Joe continues, "Suppose

I construct a set of gambles or lotteries which have only two

possible outcomes. One outcome which I' ll call W  for win! is
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a prize of $60,000; the other outcome L  for lose! is the loss
of $114,000. Now, for any monetary outcome between 960K and
-$114,000, say, x dollars I could ask myself the following
question: For what chance vr between 0 and 1 would I be indif-
ferent between x dollars for sure and the gamble which gives
me a ~ chance at W�0K! and a 1-m chance at L -5114K!?" That
is, Joe constructs the following little decision tree:

+60K

-114K

which, if taken, yields

to participate in a gami

either W�0K! Or L -$11

of a lottery ticket. TI

would be inscribed "Thi,

which yields a ~ chance

actual card, z would be

call such a prize a bas

a BRLT; read "brilt" ani

alternative a2 of our 1
hand way of drawing thi

as a prize. the nontransferabl rights
o= chance in which the outcome is

lK!. These rights might take the form

xe ticket might be a little card on which
card entitles the bearer to a lottery

at W and. a l-~ chance at L." On the

a number between 0 and 1.* We shall

Lc reference lottery ticket or, for short,

3 not "b,r,l,t." Using this definition,
ittle tree yields a ~-BRLT and. a short�

tree is:

gain of $60,000 and L is the loss of
really have to keep in mind about W
precisely defined consequences such
rred to L.

*En Joe's case W is the
$114,000. But all you
and L is that they are
that W is clearly pref



where the boxed ~ indicates that the consequence of the upper

branch is x-BRLT.

Clearly, a 1.0-BRLT is identical to W and O.O-BRLT is the

same as L. Also, clearly, as long as consequence W is pre-

ferred to consequence L, it would be reasonable to assume that

any DN given a choice between two different BRLT's would always

prefer the one with the higher chance at the preferred price,

the one with the higher m value.

This last sentence would seem to be an innocent enough

statement, but it has a very important and subtle implication.

Suppose a DM subscribing to this statement, say yourself, were

faced with the following choice:

FIGURE 2.1

If you choose either alternative al or alternative a2, you will
be confronted with a lottery whose prizes are basic reference

lottery tickets." Consider the gamble associated with al. We
can make the nature of this chance node clear if we proceed as
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*The following argument is based closely upon reference 17,
Chap ter 4.



is green, we proceed to a .4-BRLT, if yellow, to a .7-BRLT,

and if orange, to a .5-BRLT. That is, a green ball means that

Nature will move to another urn which contains 40 balls marked

W and 60 balls marked L from which she will draw a second

ball which determines whether you end up with a W or with an

L. Similarly, a yellow ball on the first drawing means she

goes to an urn in which .7 of the balls are marked W; an
orange ball means she goes to an urn in which half the balls

are marked W.

Nature could proceed in another fashion which, for all

practical purposes, is equivalent to the above process.

Suppose she places a total of l00 balls in a single urn, the
composition being 30 green, 50 yellow and 20 orange as before.
This time, however, she labels l2 of the green balls with a W

and the other l8 with an I . That is, .4 of the green balls

are labeled W. Similarly, she labels .7 of the yellow balls

�5 of them! with a W and the rest with an L. Finally, she

marks half of the orange balls with a W and the other l0 with

an L. She now draws a single ball at random from the urn,

observes the color, and. states immediately whether it is

a W or an L and. gives you the corresponding consequence. Of
course, the color is irrelevant. The important fact is the

number of W 's in this urn. Since there are 12 + 35 + l0 = 57

W's and 43 L's, drawing from this urn is exactly equivalent to

a .57-BRLT. We conclude, therefore, that the gamble associated

with al is equivalent to  or reducible to! a .57-BRLT. Observe
that .3 x .4 t .5 x .7 + ,2 x .5 = .57. That is, .57 is the

weighted average of the ticket numbers .4, .7, and .5 where

the weights are the probabilities on the respective branches.

Or, using our definition of expected value, .57 is the expec-

tation of the BRLT values or the expected BRLT value. Xn a

similar fashion, you can verify that the chance node asso-

ciated with alternative a2 is reducible to a .51-BRLT. So
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your choice boils down to either a .57-BRLT or a .Sl-BRLT.
Clearly, your choice should be al and the whole venture is now
~orth a .57-BRLT.

It is extremely important that you realize what we have
just demonstrated. At first blush, one might have felt that
it is no more appropriate for non-EMV'ers to use the expected
value of the BRLT numbers than it was appropriate for them
to use expected monetary values that, for example, some allowance
must be made for how widely the BRLT values are spread in al
versus a . This is not so. Review once again the argument

2'

of the last two pages. It says that it is appropriate to use
the expected value of the BRLT numbers without any allowance
for the spread of these numbers. Further, this is true even
though it's understood that this lottery will be conducted
just once and not repeated. Finally and most importantly,

Iit is true no matter whether you are an EMV'er or a non-EMV er,
whether you like risk or are risk-adverse. Regardless of what
monetary equivalent you associate with the basic reference
prizes, once you are faced with a decision in which all the

. y~-a'~ + .,ave. ref~~~r ce 1 otteriez, it is appropriate to base
your .delis'iar|s -'on-'the -average valu'e -of -iihe- -BRL s.; This' -wou].d
not be true if the prizes were monetary values.

Well, I hope you can now see the way we are pushing our
poor friend Joe. For if for each of the possible monetary out-
comes x which might occur in his problem he can find a BRLT
value v x! such that he is indifferent between x dollars for
sure and the basic reference lottery in which outcome W has a
chance of vr x!, then we could replace each monetary outcome
with the equivalent basic reference lottery ticket. After we
have replaced the monetary outcomes with their BRLT values Joe
will face choices of the same type as those shown in Figure
2-1 in which all the paths lead eventually to a BRLT. Hence,
we can fold. this tree back using expectation on the BRLT values
in exactly the same manner as he used expectation on the mone-
tary outcomes when he was an ENV'er.
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2.2 JOE'S PREFERENCE FUNCTION

Let us see how Joe might go about assigning m-values to

the various monetary outcomes which can result from his choices.

The first thing Joe has to do is decide on a W and an L, on

two monetary values that are sufficiently far apart that they

encompass all the possible outcomes in his problem. As indi-

cated earlier he could pick W='gain of 60K' and L='loss of

114K', or he could pick any W higher than +60K and any L lower

than -114K. We shall see that it doesn't matter as long as he

sticks with the same W and the same L throughout his analysis

of the problem. Let us say he goes with a W of +100K and L of

-150K just so he can deal with even numbers. In short, for Joe

we introduce the set of basic reference lotteries in which the

more preferred. consequence is a gain of glOOK and the less

preferred consequence is a loss of 9150K. In other words, a

~-BRLT gives Joe a m chance at +100K and 1-vr chance at -150K.

Next we ask Joe what amount x he would want for certain in

lieu of a v-BRLT for all possible m's. His answers set up a

correspondence between x and v. We can graph this correspon-

dence in the form of a curve where for each x on the abscissa

there is a corresponding m x! on the ordinate. Figure 2-2 is

such a graph. This curve is called a preference curve for

money and completely characterizes Joe's evaluation of the pos-

sible consequences which could befall him Thus, for example,

on the graph shown the point  -60,.67! lies on the curve which

means that Joe is indifferent between losing 60K for sure and

a .67 chance at +100K and a complementary chance at -$150.

Clearly, Joe is now very risk-adverse.

Even before we ask Joe any questions, we know two points

on this curve since, by definition, a 1.0-BRLT is the same as

+�00K for sure and O.O-BRLT is the same as a loss of 9150K for

sure, the curve must go through the points �00K,1.0! and

 -150K,O.O!. In fact, the preference curve for an EMV'er is

simply a straight line between these two points. We can verify

this by going back to our little tree on page 45 and observing
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that f or an ENV ' er

x=m  x! �00K!+ �-m  x! !  -150K!

vr  x! =  x+150K! /250K

which is just the equation of a straight line between the two
end points. However, Joe is no longer an ENV'er and, therefore,
we will have to get him to reveal his preference function by
asking him a set of appropriate questions. For example, we
might ask him at what m he would be indifferent between $0 for
sure  the status quo! and a vr-chance at the reference prizes.
Suppose, after considerable soul-searching, he answers he
would not be willing to give up the status quo unless he ob-
tained a .9 chance at the gain of $100K. Zf this is the case,
the point  OK,.9! is on Joe's curve.  This is point 51 in the
graph.! Ne might then ask Joe at what x he would be indiffer-
ent between the alternatives al and a2 in the following tree.

+100 K

Suppose he said $40K. Well, the upper branch is reducible to
a .95-BRLT. Hence, .95 must be the BRLT value associated with
+40K. This is point 42 in the Figure 2.2. Continuing in like
manner, we might ask Joe for the amount of x for which he would
be indifferent between the following two alternatives.
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Suppose he answers that he would pay 110,000 dollars to avoid

this unfavorable gamble. Then  -110K,.45! is on Joe's curve

since the top half of this tree reduces to a .45-BRLT. We now

have five points on Joe's preference function.

In serious business matters, many individuals are risk-

adverse in the sense that for any lottery of the form

where y and z are specific monetary amounts, the amount x for

which they would be indifferent between this lottery and x for

sure is less than the EMV of the lottery or

x <.5y + .5z

It is an easy matter to show that if an individual is risk-

adverse in this sense, his preference function must be concave,

i.e., shaped. like this ~ and not like ~ . Thus, if Joe
regards himself as risk-adverse, he will want to fit a curve

through the points we have obtained for him which is always

curving to the right as we proceed northeastward along it.

We have fitted such a curve through the points we have obtained

in Figure 2-2. Joe should now test this curve by looking at

different lotteries of the form

for a. variety of values of y and z
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and determining the amount x for which he would be indifferent
between x for sure and the lottery and then seeing if the point

 x,.5y+.5z! is on the curve. Occasionally, the results will
not jibe and Joe will have to bend or straighten out the curve.

Let us assume that, after such jockeying, he ends up with the

curve as it is drawn in Figure 2.2.

At this point, Joe can turn the analysis of his problem
back to us, saying, "I don't know what my best strategy is, but
I want it to be consistent with this preference function."

If that is the case, we can proceed as follows.

First, we replace all the monetary values associated with
traversing any path in the tree by their corresponding indif-
ference values. This has been done in Figure 2.3. Notice

we must perform this substitution with the final outcome inclu-
ding any payments for testing or guarantees made before the
final branching points in the tree. In folding the tree back,
we no longer have the freedom of not counting a payment until
we reach the point on the tree where the payment is actually
made. The only reason we got away with this before is that the
ENV of the sum of two monetary payments  rewards! is equal to

the sum of the EMV of each individual gain  loss!. This is not

true for BRLT values. A payment, say for a guarantee, changes

your asset position which in general changes your whole outlook
on the risks you are willing to take. We must throw all pay-
ments and gains to their rightmost nodes, and only then apply
the BRLT values and begin folding back.

Let us actually do just one of the possible test plans,

say T3. In order to do so, we will assume that Joe's prefer-
ence function is given by the graph in Figure 2.2, which is

closely approximated by

1T  x! =. 13 �-. 5 ! +. 90
. 02x

where x is the monetary outcome in thousands of dollars. Using
this approximation the m-values associated with each of the
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possible outcomes of test plan T3 are shown if Figure 2.3.*
Notice that the monetary outcomes include alX the rewards and
penalties associated with moving along the path leading to each
node. Folding the preference function back leads to the node
values shown at the left-hand side of Figure 2.3a. At any

point in the tree we can obtain the monetary amount for which
the DM would be willing to sell the rights he has at that node,
i.e., the amount x for which he is indifferent between x dol-
lars for sure and the lottery which he faces at the particular
node. This quantity is called the cet4a~nCy moeeiaty eqoiva-
lent  CÃE! of the node and. the CME for the leftmost nodes in
this subtribe has been placed under the corresponding node.

The remainder of the folding-back process has been carried
through. completely in Figure 2.3. Notice that the new optimal
strategy is not to test. at all but to buy the ship immediately
with the guarantee. The reason for this is that. our friend Joe
is so risk-adverse that he ends up buying with the guarantee

almost no matter what happens in any test plan. If you almost
always are going to end up buying with the guarantee no matter
what the outcome of the test, there is little point in paying

for a test.

Joe can still figure out how much he should be willing to
pay the stranger for his information at any node, N, by solving
the following expression for y.

"Actually, since we are going to take expected values of the
preference function and expectation is a linear operation,
one could use any positive linear transformation of the pref-
erence function and obtain the same strategy. For example,
it would be a little simpler in Joe's case if we worked with
the function 1-.5 . A function which is a positive linear
transformation of a preference function is known as a Von Neumann-
Norgenstern utility. See reference 20 '
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Pr Stranger says Peach Information available at node N!

n Monetary amount he can make if ship is a peach

given his present position -y

+Pr Stranger says Lemon Information at node N!

n Monetary amount he can make if ship is a lemon

given his present position -y!

=n  Node N!

The left-hand side of this expression is the expected

value of his preference function given that he pays the stran-

ger amount y. The right-hand side is the expected value of the

preference function given that he does the best he can without

the stranger's information. The maximum amount, y, he should

pay the stranger is the amount which leaves him indifferent

between having the information and not having it. Notice in

general there is no direct relationship between the CME of a

node and the value of perfect information as there was for the

EMV'er.

2.3 WHERE DO WE GET THE PROBABILITIES?

We are now ready to turn to the problem of where do we get

the probabilities we need in order to fold the decision tree

back in that very large set of real-life cases where there is

no "firm" data upon which to base probabilities. Consider, for

example, an offshore wildcatter who is thinking about an expen-

sive seismic survey in a previously-unexplored area. No data

on the area exists and all his geologist will say is, "Geo-

logically, the region has some resemblance to the Black Sea and

there have been some finds there, but it also resembles the

Bay of Bengal and nobody has found any oil there." What does

this man use for the probabilities of the possible outcomes of

his tests? Or consider a shipowner wondering whether or not

he should introduce a new technology, say a new power plant,

aboard his ships. If the plant is as good as the manufacturer's

claim, he will have a definite competitive advantage over his

colleagues, but the owner knows that new plants are rarely as

good as the manufacturer's claim, at least not at first. No

real operational data exists on the plant. How can this man
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obtain the probabilities he needs to analyze his decision tree?
Other examples: the probability that the Suez Canal will reopen
in 1972, the probability that the North Sea will be producing
x billion barrels of oil in 1974 for a range of x.

In order to indicate how a DN might approach this diffi-
cult set of problems, let us return once again to Joe's problem
with the following variation.

A shipowner named Joe of our acquaintance is in the
market for a used C-4. After surveying a number of
brokers, he has found one such ship for one million
dollars. The best deal he can get elsewhere is gl.l
million for a fully found ship. Joe likes the looks
of this ship and figures he will save gl00,000 by
buying it. Unfortunately, just. as Joe is about to
close the deal, he overhears the broker who has been
serving him talking with another broker. His broker
says, "This business is a tough racket. I have a
buyer for that old C-4, but the practices of our busi-
ness prevent me from warning him that he may get. stuck
if he buys it." The other broker asks, "What do you
mean?" Joe's broker replies, "I used to work for the
company that built that ship. Some, I don't know how
many, of this class were built in a new yard where
they were still having production problems, those
ships were lemons. The rest were pretty good. ships;
peaches, we used to call them...

Joe's problem now is that, while he realizes that the
probability of his ship's being a peach is crucial to his analy-
sis, he has no firm data, such as the ratio of peaches to
lemons, upon which to base this probability. Joe knows that
the shipbuilder is unlikely to tell him how many lemons it made
and, that the broker is sure to claim that it is a peach, if
asked. In fact, in the time available Joe doesn't have any-
thing to go on other than his general impressions about how
this class has performed in the past. Of course, these impres-
sions are based on long experience in the business, years of
using his judgment to sift and combine rumor, hearsay, and hard
facts relating to these ships. Joe certainly doesn't want
to throw this hard.-won experience out the window. In fact, he
regards his intuitive knowledge of ships and shipping as his
most. valuable asset. The problem, rather, is to incorporate

this set of experiences into the analysis.



In order to do so, he will have to calibrate his vague

feelings about the likelihood that his ship is a peach. How
can he perform this calibration? Well, after his earlier luck

with BRLT's Joe decides that maybe by asking himself the right

set of questions concerning basic reference lotteries, he can

measure his judgments concerning the likelihood that the ship

is a peach. Joe sets up the following tree.



let us assume Joe agrees that. he is indifferent between a2 and
a .8-BRLT.

The question then is to what extent we can regard .8 as
Joe's probability that the ship is a peach. Should Joe, given
the above indifference, analyze his problem just as if he knew

that the proportion of peaches was 80%? Should he update this
calibrated judgment via Bayes rule as he did before, given the
results of his test plans? Should he act in all ways just as

if this .8 was just as good a probability as the earlier ~ 8
based. on knowing the proportions? The answer is yes, provided:

a! Joe wants his decisions to be consistent with a set
of postulates which we are about to presents

b! Joe has no other means than the ones already postu-
lated for obtaining information on the ship's true

status.*

However, in order to present this argument we are going
to have to go back to the beginning and. carefully lay out just
what postulates concerning decision-making under uncertainty
Joe will have to accept in order to make this statement true.

We will call these postulates axioms and each DM will have to
decide for himself whether or not he wants his choices to obey

these axioms. If the answer is yes, we will be able to prove

not only that the DM can determine his probabilities in the
manner outlined above, but also that if he does so and if he

determines his preference function as indicated earlier, then
logically he must fold back any decision tree he faces in the
manner we have suggested and follow the indicated strategy.

I there were a means other than those displayed in the deci-
sion tree of Figure 2.3 by which Joe could obtain more infor-
mation about the likelihood of a peach, then the problem be-
comes strategically different from the Chapter I problem with
a different tree. For example, if Joe knew that the broker
knew what the proportion of peaches was, Joe can now reason-
ably consider such strategies as offering the broker a bribe
for the information and develop the decision tree relevant to
determining how large a bribe he could advantageously offer.
In the original problem, since Joe already was certain of this
proportion, it made no sense to consider paying for this
information.
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PART II. THE FOUNDATIONS OF DECISION THEORy

2. 4 THE BASIC PROBLEM

Any decision under uncertainty, however complex, can be

boiled. down to the following core problem: A DM is faced with

a. choice between two risky alternatives or lotteries, R and

will award the DM consequence c. if event E. occurs and
i 3.

will award the DM c! if E! occurs. These alternatives are
1

sketched below. The sets  E. ! and  E.' 3 must each be mutually
i 1

exclusive and collectively exhaustive. Any decision under un-

certainty can be reduced to this problem in the sense that, if
we can handle this choice, we can solve any more complex

probl cl

c2

C.

cl

c2

C
1

6l

Decision theory is that branch of systems analysis which

has developed to handle precisely this problem. Decision theory

is based on the $acX that if the DM is willing to scale his



preferences for the possible consequences of his actions and
his judgments concerning the uncertain events which will affect
the outcome of his actions and is willing to accept two prin-
ciples of consistent behavior, then he can by straightforward
calculation determine which of several risky alternatives he
should adopt if he is to be consistent with his own preferences
and. judgments.

? 5 CANONICAL CHANCE

In order to give the DM a basis upon which to quantify his
preferences and judgments, we must introduce the concept of a
canonical lottery. A canonical lottery is a lottery in which,
aa  ac aa She. VM ih c.oncekned, all the possible outcomes are
equally likely. Consider an experiment with N possible outcomes
and consider two lotteries R* and k**. k* awards a valuable

consequence c if the result of the experiment is any of n* of
the possible outcomes of the experiment, and R** awards the same
consequence if any of n** of the possible outcomes occur.
If DN prefers k* to R**, if and only if n*>n**, then we say the
experiment is t'anon~cal. Zf DN is indifferent to the exact
designation of the outcomes in this manner, we say that the
outcomes are equally EikeLg. A canonical ZoX4eh,g is any lot-
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inical chance as- defined- above- is a proba i ity

. sample space of the outcomes of the canonical measure on th<

experiment.

62



At this point, we must indicate just what we mean by
a probability measure. That is, we must tighten up
our somewhat loose use of the word "probability."
To a mathematician probabilities are numbers assigned
to events which obey the following three simple rules:

1! For any event A, Pr  A! >0

2! Pr  A+A' ! =l. 00

3! If A and B are mutually exclusive, then
Pr  A+B! =Pr  A! +Pr  B!

Surprisingly, all of probability theory including the
Sum Rule, the Product Rule and. Bayes Rule can be
derived from these rules.

Thus, in order to prove that canonical chance as
defined above is a probability, it is only necessary
to show that n y!/N obey these three rules. But that
is almost obvious.

1! The ratio of a non-negative number, n y! and.
another non-negative number, N, is non-negative.

2! The consequence y+y' is the consequence of all
the possible outcomes. By the above descrip-
tion, the canonical chance of any of the possible
outcomes is N/N=l.

3! Let yl and y2 be two possible sets of outcomes
such that yl and y2 cannot occur simultaneously,
then the number of outcomes favorable to the
consequence  yl+y2! is equal to n y ! +n y ! .Hence, the canonical chance of yl+y2 equa s the
canonical chance of yl plus the canonical chance
of y

In short, canonical chances are probabilities which means,
among other things, we can combine them according to the
Sum Rule.

Re are now ready to state Axiom I. In order to obtain a

meaningful basis for quantification of preferences and judg-
ments, we must assume that, for any pair of real-world conse-

quences, the DN can imagine a canonical experiment whose outcome
will determine which of these consequences he will receive.

Further, given two such canonical lotteries, he will prefer the
one which gives him the higher canonical chance at the more pre-

ferred consequence. Nore precisely:
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Axiom I. Let c' and c" by any real-world consequences such

that c'~c".* For any positive integer N, the decision-maker

can postulate an experiment with N possible outcomes such that,
if one lottery entitles him to c' on the occurrence of one of
n.' possible outcomes and c" otherwise, while another lottery en-
titles him to c" on the occurrence of one of n" possible out�

comes, then DN will prefer the former lottery to the latter if
and only if n'>n'.

The reader should observe that Axiom I implies that the
outcomes of this experiment are equally likely in the
sense defined above and, thus, the experiment so postu-
lated is canonical. Axiom I implies not only the exis-
tence of a canonical lottery, but also that canonical
lotteries with the same pair of prizes can be ranked
according to the canonical chance that they yield of
obtaining the more preferred consequence. As we shall
see, Axiom I gives us a fully defined reference scale
for measuring our subjective preferences and judgments'

Axiom II postulates the decision-maker's ability to rank

his preferences for the set of possible consequences in terms

of canonical lotteries.

Axiom II. Given any set on consequences, j.c.!, the DN can

select a consequence c* which he finds at least as attractive,

and another consequence, c�, which he finds at least as unat-

tractive as any other of the consequences. Further, he can

quantify his preference for each of the possible consequences

c. by specifying a number m c.! between 0 and 1 such that he
1 1

would. be indifferent between c for certain and a lottery yield-

ing a canonical chance m c,! at c* and a complementary chance at
l.

c* ~ Thus we ask the DN to display his preferences for the
possible consequences by considering the set of alter-
natives sketched below

*The symbol " ~ " is shorthand for "is preferred to." The symbo.
"<" means "is indifferent to."



and deciding for which vr he is indifferent between
choices. Axiom II obviously depends on the DM's
ability, stipulated in Axiom I, to imagine a canoni-
cal lottery for c* and c� which yields c* with canoni-
cal chance z for all possible m's. c* and c� corre-
spond to W and L in the earlier discussion.

2. 6 QUANTIFICATION OF LIKELIHOODS

Axiom III is the judgmental counterpart to Axiom II which

stipulates the DM's ability to relate his feelings about the
uncertain events upon which the outcome of his choice depends

to canonical lotteries.

Axiom III. Let, E be any event and let c* and c� be the

consequences defined in Axiom II. The DM can quantify his
judgment concerning E by specifying a number p E! between 0 and
1 inclusive such that he would be indifferent between a lottery

which yields c* if E occurs and c� otherwise and a lottery which
yields a canonical chance p E! at c* and a complementary chance

at c~.
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C*

for what canonical chance p E! he would be indifferent
between the choices al and a2.

The three axioms stated so far allow us to measure the

DM's feelings about consequences and uncertain events; however,
by themselves they do not allow us to draw any inferences from
these measurements. In order to do this, we must postulate two

rules of behavior which the DM wishes his choices to follow.

The first of these is transitivity.



2.7 TRANSITIVITY

Axiom IV Let i', k", and k''' be three lotteries.

If the DM is indifferent between 9.' and R" and is indifferent

between k" and k''', then he is indifferent between R' and

If he is indifferent between R' and i" but prefers R" to

then he prefers k' to X''', and so forth.

One argument for transitivity is that if your prefer-
ences violate it, you can be turned into a money pump.
Suppose a DM prefers lottery 1 to lottery 2, lottery 2
to lottery 3 and lottery 3 to lottery 1. That is, he
violates the axiom. Suppose such a DM starts out
with lottery 1. Well, if his preferences mean anything
at. all, he would be willing to pay a slight premium to
exchange 1 for 3, say 250. He now has 3; hence, if
offered 2 for a slight premium, he would be willing
to exchange 3 for 2. He now has 2 and, since he pre-
fers 1 to 2, he would be willing to pay a slight pre-
mium for 1, whereupon we offer this poor man 3 for a
slight premium, and so on. This DM's time to ruin is
solely a function of how fast he can make the ex-
changes. In general, unless one assumes some form of
transitivity, it is impossible to even think in terms
of rational decision-making for, by its very nature,
decision-making implies an ability to rank one's alter-
native outcomes and an intransitive ranking is no
ranking at all.

This is not to say that in real life people do not
exhibit intransitivity. We do so all the time. The
theory is not aimed at describing how people make de-
cisions, but rather at indicating how they should make
decisions. Clearly, there would be no need for such
a normative theory if DM's always operated in a manner
consistent with the theory without ever having been
exposed to the theory itself.

2.8 SUBSTITUTABILITY

The second behavioral rule which we postulate is substitu-

tability.

Axiom V. Let a lottery be modified by replacing one of

its consequences. If DM is indifferent between the replaced

consequence and its replacement, then he is indifferent between

the original and modified lotteries.

This is the "no fun in gambling" axiom. Since all
the other consequences in the lottery stay the same,
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it would seem reasonable that the indifference be-
tween the replaced consequence and the replacement
would not. change with the change in context. Once
again, however, in practice people violate this pos-
tulate. Each reader will have to decide for himself
whether or not he wants his decisions to obey this and
the precedizg axiom. It might be a good idea at
this time if the reader went back and reviewed each
of the five axioms and see if there are any that he
can't stomach.. Be warned, however, that if the ans-
wer is No, you have built yourself a straightjacket--
a rather comfortable straightjacket which will allow
you to analyze any problem, however complex, in an
internally consistent manner.

2. 9 PROOF THAT p  E! ' s ARE PROBABILITIES'

Given these axioms, we now propose the following method of
attacking the core problem whose decision tree is shown on

page $-2p.

l! For each consequence, c, substitute the canonical
lottery which gives a chance 7r c! at c* and a comple-

mentary chance at c�

2! Assign p E! to each event branch resulting from the

possible choices.

3! Reduce each of the resulting compound lotteries to a
simple canonical lottery in c" and c� taking expecta-

tions of the 7r-values.

4! Choose that alternative which reduces to the simple
canonical lottery with the highest chance of yielding
c* ~

In order to justify this procedure, we will have to prove

two basic theorems. The first is:

Theorem I. The function p defined by Axiom IEI is a proba-

bility measure on the space of events  E,!.i

We will prove this and the following theorems by
making equivalence arguments between. certain well-
chosen lotteries involving both real-world events
and the outcomes of a canonical experiment. In so
doing we will represent the lotteries both in the
now familiar decision tree form and by the following
somewhat more concise notation. Let j,y! be a mutu-
ally exclusive and collectively exhaustive set of
outcomes of a canonical experiment and let  E.! be1
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mutually exclusive and collectively exhaustive set
of real-world events. One way of representing the
lottery which yields consequence c,, if both E. and y

j3 3
occur is by the array:

E E
1 2 .. ~ . ~ .. i

E.

Yl

Y2

Yj
I ~

We will use this notation often below.

The proof that all p E!'s are non-negative--obey the first
axiom of probability--is direct from Axiom III. The proof that

p E! and p K'! add to 1.00 is a little more interesting.

Using the above array notation, consider the following

lottery, R, where the event K is a real-world event of interest

and the event Y is determined. by a canonical lottery and has

canonical chance 1/2. Such a lottery exists by Axiom I.

E E'

Y'

tree form this lottery can be represented by



By Axiom III, there exists p E! and p E'! such that

By Axiom V, we can substitute these indifferences into R and

obtain

But the .5's, p E! and p E'! are all canonical chances, thus

probabilities. Applying the Sum Rule to the above lottery i t
can be reduced to

That is the lottery k is eq a . 5 ~  p  Z! +p  E '! ! -BRI.T.



On the other hand an alternate representation of R is

But by Axiom IZ both secondary lotteries are indifferent to .5

Thus, by Axiom V

which lottery is equivalent to a .5-BRLT. Finally, using

transitivity, we have

which by Axiom I implies 1 2
or the p's of an event and. its complement. sum to 1.0 which is

equivalent to saying that the p of the universal event, is 1.0.
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Finally, we must prove that, if El and E2 are mutually
exclusive, then p El+E2! =p El!+p E2! . Let E3 be the complement
of  E +E ! and consider the following two lotteries where, as

l 2
before, Y is an event having canonical chance .5.

Y'

and i2 may be represented as shown below.
l

~ 5 c*

E

"c*--

branch is equivalent to a .5-BRLT.

nd I, Rl~R2.
But in both cases middle

Therefore, by Axioms V a

7l



On the other hand, 2,l and R2 may be represented as shown below.

Tn Rl, the upper arm is indifferent to p El! and the lower
arm is indifferent. to p E2! by Axiom III. Thus, by substitu-
tability, Rl is indifferent to

which, via the Sum Rule  which we can use since now we are

dealing entirely with canonical chances which we have ai-

d rove are probabilities!, is indifferent to

Again by Axiom III, the upper arm of R2 is indifferent to
p El+E2! and the lower arm to 0 . Thus, by substitution,

which is reducible to
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Since R >I , by transitivity

P  El! +p  E2!
2

P  E +E2!

which implies by Axiom I that

P  E !+p E ! p E +E !

2 2

2. 10 THE BASIC THEOREM

sible outcomes. The extension to a larger number of outcomes

is straightforward.

Theorem II. Let E ,E and E be three mutually exclusive and

exhaustive events, then the lottery yielding c if E occurs,

c2 if E2 occurs and c3 if E3 occurs is indifferent to the lot-
tery, R, yielding a 7r chance at c* and a complementary chance

at c~ where

tp E.!m c.!

By Axioms I, II, and V we replace the consequences in k by
canonical lotteries on c* and c�. Thus,
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We are now in a position to prove our basic result--that any
real lottery can be reduced to a basic reference lottery in the
manner proposed earlier. To simplify notation, we will prove
the theorem for the case where the real lottery has three pos-



cl

c3

Assume without loss of generality that the c. have been ordered
1

such that z >~ >~ . By Axiom I, we can construct a canonical

experiment with four possible outcomes, Yl,Y2,Y3,Y<! such that

Now consider the following compound lottery:

El 82 E

Y2

Y3

Y4
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Y3 has
y4 has

canonical chance m3
canonical chance  v2-vr3!
canonical chance  ~l-~2!
canonical chance  l-ml!



The reader can verify that, for each E., this compound lottery
i

yields the canonical chance at c* called for by lottery

Thus k">k'. But k" can be represented by

But by Axioms III and V and the fact that the function, p E. !
is a probability, this lottery is indifferent to



But now we have everything in terms of canonical chances on

c and c� which are probabilities. Therefore, using the
Sum Rule, we find that. the above lottery reduces to a

pl .ml + p2. ~2 t p3.~3 canonical chance at c* and a complemen-
tary chance at c<.

2.ll DEFINITION OF CONDITIONAL PROBABILITY AND JUSTIFICATION

OF BAYZS RULE

We already have all the basics of Bayesian decision theory.

However, we need one more definition and proof in order to in-

struct a DM who is willing to accept the axioms as to how he

should change his subjective probabilities as new information

becomes available.

Consider the following lottery where El and E> are real-
world events such that El+E =U and Y is an event determined by
a canonical experiment.

El E2

Y'

Def.: Given that Y occurs, the canonical chance, p, such that

I I I I I I I I I I I I I I IJ I I I I I I I I I IJ I I I I I I I / I I I I I I I I I I I IJ I I I I I I I I I I I I I I I I I I I I I Ill I I R I I E I I I I I I I I.I I.I.I.IYIYv > > I 6< > > > > > > > >7< > >4 < > U I I! I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I.antic�--othervxse--axle=-a,canonzcaJ J.otkhY'p"'0'5LLerzng c~--vxftl

chance p and c� with chance 1:p is called the conditional

gous definiti on for Pr  Y ~ Zl! .

THEOREM: Justification of Bayes Rule for subjective conditional

probability.

above has two representations
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By Definition of Conditional
Probability

By Definition of Conditional
Probability

By Sum Rule since we are
dealing with canonical
chances

By Sum Rule

By Transitivity & Axiom I

Pr  Y El! = Pr  Y I El! Pr  El!
By Transitivity & Axiom I

Pr  Y El! = Pr  'Y! Pr El ~ Y!
Interchanging roles of E and E2, we also have Pr Y E2!

1

Pr  Y IE2! Pr  E,! = Pr  Y! Pr  E2 I Y!-
Since Pr Y! is a probability, the Sum Rule holds and

Pr  Y! = Pr  YEl! + Pr  YE2!
or

Pr Y! = Pr YIE]!Pr El! + P«YIE2!Pr E2!

Combining

Pr  Y I El! Pr  El!
Pr E [Y!l Pr Y El Pr El + Pr y E2 Pr E2

which proves Bayes Rule.
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What we have shown is that using this definition of conditional
probability which is based on the DM's indifferences, then the
DM who accepts the postulates of decision theory should update
his subjective likelihoods according to Bayes Rule. This then
is the justification of our approach to Joe's problem of evalu-
ating his test results.



2 . 12 SOME EMP IRICAL DATA

Well, we have come to the end of our purely deductive

reasoning about the five basic postulates of decision theory--

no doubt with some relief. A natural question is: has it ever

been tried? There have been several attempts to assess real-

world decision-makers' preference functions and to determine

to what degree their decisions are consistent with these func-

tions. Most of this work has been aimed at inland oil and gas

operators, e.g., references 5 and 6. These studies showed

that it was possible to get DMs to display consistent prefer-

ence functions, which they were willing to stick with, that the

DMs interviewed displayed a rather large spectrum of attitudes

toward risk, ranging from very risk-adverse  such as our friend

Joe! through close to EMV'er to, in some cases, willingness to

take negative expected value bets in certain situations. In

references 5 and 6 no examination of the degree to which these

DMs' actual decisions were consistent with their preferences

was undertaken. More recently, Lorange and Norman, references

10 and ll, interviewed 17 Scandinavian shipowners. Fourteen

of the owners had no difficulty answering the type of questions

posed on pages 50 and 52 and only two had major difficulty corn-

paring the hypothetical lotteries offered. These authors used a

W of -$15 million and a L of -91.5 million. Most of their ques-

tions were phrased iz terms of 50-50 gambles. In situations

where the owners were told to assume that their borrowing powers

would be unaffected by their asset position, all but two of

the owners were risk-prone, that is, they would be willing

to accept negative expected value bets over a significant, range

of the outcomes. When told to assume that the company could

sustain a loss of 1 ~ 5 million dollars but not much more with-

out affecting borrowing power, only about half the owners he-

came risk-adverse. This is a highly unusual set of results

and certainly lends credence to the conventional wisdom that

shipowners, or at least Scandinavian shipowners, are unusually

willing to take risks.* Lorange and Norman went further and

studied the actual behavior of these owners. They found that,
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on the whole, those owners who displayed highly risk-prone

preference functions had fleets with a high percentage of

tankers. They also found that the more risk-prone owners had

significantly shorter average charter contracts than their more

risk-adverse colleagues. In short, in a very general and loose

sense, the owners seemed to be operating in a manner that was

consistent with their preference functions in that the risk-

prone owners tended to devote more of their capital to the high-

risk trades.

As a postscript, the owners displayed considerable interest

in. the interview and its results. It is, of course, doubtful

whether they took their preference functions back to the office

and. put them to use. However, the following chapters will

indicate how they might do so, if they so choose, i.e., if they

had. decided to accept the five basic postulates of decision-

making under uncertainty.

*It should be noted that even if a DN were willing to take a
negative expected value bet, he would not do so until he had
exhausted all positive expected value bets over the same range.
Since an investor can usually find a positive expected value
bet somewhere, acceptance of negative expected value gambles
is probably best explained by a desire to stay in this parti-
cular business.



CHAPTER 3

SEQUENCES OF DECISIONS AND DYNAMIC PROGRAMNING

Well, we have a method which in principle can handle any
problem. However, as the example of Joe's problem indicates, it
doesn't take very long before even the simplest decision tree
grows into a messy bush. Joe had only two decisions= which
test to use and whether to buy, buy with guarantee or refuse
the ship after the chosen test was over. Joe had essentially
a two-stage problem. Yet with only two stages the tree had
already grown too big to fit on a single page.

Typically, real-world problems will involve a large number
of stages. An offshore oil operator contemplating opening up a
new field faces a set of exploration and development decisions
involving at least ten separate stages. A shipowner operating in
the charter market will make a decision on the average of about
once every two months with respect to the employment of his
ship--a sequence of decisions which will involve over 100 sepa-
rate stages during the life of the ship. In general, the number

N
of possible paths in a decision tree is of the order of M where
N is the number of options open to the shipowner at any point
in the sequence and N is the number of stages in the sequence.*
Clearly, our brute force method of folding back the entire tree
quickly becomes unworkable as N becomes even moderately large.

In Joe's original problem, we were able to take advantage
of the structure of the tree in order to save us some work. We
found that we were able to evaluate test plan T3 by relating
various nodes of this plan to nodes we had already evaluated
under test plans Tl and T2. With this as a hint, let us turn to
a very simple sequential problem under certainty and see if we
can't formalize a method for taking advantage of the fact that
often there are a variety of paths which lead to essentially the
same point in a decision tree.

*Actually, the tree is much larger even than this when the
chance nodes are accounted. for.
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3 . l THE CONCE P T OF DYNAMIC P ROG RAMMING

Consider the following completely deterministic problem.

We have the network shown in Figure 3-l. We wish to traverse

this network from A to Z. This might be a traffic light net-

work or an extremely simple and regular production process net-

work. In any event, associated with each link is a cost  money
or time!. These costs are the numbers shown on each link. Our

problem is to find that path from A to Z which minimizes the
traversal cost.

H

X=

Stages

One obvious possibility is simply to enumerate all the pos-
sible paths and pick the one with the lowest cost. There are
2 =l6 paths, so this is no great undertaking. However, being4

of an especially lazy and contrary nature, we decide that this
is both too time-consuming and too straightforward. We ask our-
selves: Is there a way that we can make use of the regular
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structure of the problem to reduce our computational travail?

The first thing we note is that the problem, like many much
more complicated problems, is a sequential one. We may imagine
that we construct our path by first choosing a branch from A.
We call this choice the first homage, of the process. At the
second stage, we choose a branch leading from the terminal node
of our first choice, and so on. To make the second choice we
need to know which of the two nodes B or C is the terminal node
of our first choice. We call the designation of this terminal
node the blate. of the system at stage 2. Similarly, at stage 2

wF ~can g'otic~- ai gpancn'r � i fwe--x hog~~ i aw>M~O5=-'p f .=Dang~+ -Cw~ g=-j? L9 =
From this viewpoint'we have five individual decisions-anci=a-
five-stage decision process.

Given this structure, how shall we generate the sequence

of decisions which produces the path of minimum cost? We rea-
son as follows. Suppose we somehow knew the value of the mini-
mum cost path associated with each of the following two shorter

problems:

l! The path connecting B and Z;

2! The path connecting C and Z.

Then we could easily evaluate the particular path from A to Z
which has AB as its initial branch and whose four remaining
branches constitute the path of minimum cost from B to Z by
simply adding the cost of branch AB to the cost of the minimum
cost path from B to Z. Any other path from A to Z with AB as
its first branch will be inferior to this one. Similarly, one can

calculate the minimum cost of the path from A to Z with AC as its
first arc by adding the cost of AC to the cost of the minimum cost
path from C to Z. These are the only two possibilities. So it
is clear that we would have no trouble determining the best ini-
tial branch. if we knew the values of the minimum cost paths from
both B and C to Z. IVoXe Skag aa  ae aa the. $~cw4 stage, de.c~s~on

coecaaeed, i4 xs not Xke. ~dent~ ~cation. o  4k@. einamum coat
paths /!toe 8 and C Xo Z, buX 4hz. uaEuea o$ thence paCka which ae
4h.e. viXaZ in. o<ma4ion.
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Continuing this line of reasoning, we could easily determine
the values of the minimum cost paths from both B and C to

Z if we somehow knew the values of the minimum cost paths from

both D and E to Z. Just as we reasoned earlier that we could

solve the original five-state problem if we had already solved

two four-stage problems, we can now relate each of the four-stage

problems to two three-stage problems; that is, the determination

of the minimum value paths from both D and E to Z. This recursive

reasoning can be continued until we need only the values of the

minimum value path from each of H and I to Z. But these values

are easily obtained, since there are no free choices associated

with each of these last two problems. The values of the minimum

cost paths from H and I to Z are 2 and l respectively. These

values we associated with the nodes H and I. In the figure we have

placed these values in circles under their respective nodes.

We can now. move back to each of the decisions at stage 4.

If we are at F we have the choice of going to H at a cost of 5

and we know from the circled quantity at H that the minimum

cost path from H on has a value of 2. Thus, the value of the

alternative is 5 + 2 or 7. On the other hand, if we choose

to proceed. to I at a cost of 2 we know from the circled quan-

tity at I that the minimum cost path from I on has a value of

l for a total cost of 3. 3 is better than 7; so the indicated

action if we are at F is to go to I. We have shown an arrow

indicating this choice and have placed its value, 3, in the

circle under F. Similarly, if we are at G we would determine

that the minimum cost path is towards I and has a value of 5.

We can now proceed in a similar manner to the two three-

stage problems starting at D and E and determine that the re-

spective values associated with these nodes are 5 and 4 with the
arrows designating the minimizing direction. Notice that, in

solving the two problems emanating from D and E, only the
values assigned to the next stage, those at F and G, are rele-

vant. This has important implications for much larger prob-

lems in. which computer memory constraints are a consideration.
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In order to calculate the values for stage n we need only the

answers for stage n+l.

Proceeding in a similar manner to the two four-stage

problems and finally to the five-stage problem yields the cir-
cled values and arrows shown in the figure. The value of the

minimum cost path is 9, and it is an extremely simple manner
to determine that path by simply following the arrows,

starting at A. It is ABEFIZ. Indeed, one need not and in
general one doesn't bother to keep track of the arrows for one
can. always tell f.he @os~.einimizinq decision for anv particular

node from the ci.rcled quantities

Suppose we had forgotten to draw the arrow emanating from
E as we moved backward calculating the value of the cost mini-

mizing paths. After completing this calculation and then
moving forward from A to E, we would have no direct guidance
about which way to go. However, we could easily figure out
which way to go by repeating our original computation at E.
If we go to G, the best we can do is 5+4 or 9 while if we
go to F the best we can do is 1+3 or 4. F is the obvious
choice, and , of course, the value of this choice must equal
the circled quantity at E. Clearly, by such reasoning we
could do away with all the arrows if we so chose. The value
of the circled quantities by themselves determines the
minimizing path. In bigger problems, we will sometimes make
use of this fact to decrease computer memory requirements.

In summary, once one has the value of the minimal cost

path for all nodes, then one has the minimizing path. Notice
also that we have solved somewhat more than our original prob-

lem. We have solved the problem of finding the minimizing path
from any node to Z.* In this case, this additional information
was not, needed. We shall see that when we move to decisions

under uncertainty this information which, if you like, comes

* Notice that for node C we have the interesting but not trouble-
some case of both choices being cost-minimizing. If we are
at C, it doesn't make any difference which link we choose.
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free is o f considerable intere st ~

We have out 1 ined a rather roundabout way of solving a very

simple problem. We may we 1 1 ask our se Ives: What are its com-
putational advantages? Compared with direct enumeration, at
least, they are cons iderab 1 e . Using direct enumeration, we
have 2 paths and the evaluation of each path requires 4 + 14

4
additions . Thus, total additions by enumeration =   4+1! ~ 2 = 80 ~
By our backwards recursion method, we must solve 2 ~ 4+ 1 two-stage
prob 1 ems, each invo lving two addi tion s for a total of 2 ~   2 - 4+ 1 ! =
18 . * Eighteen additions versus 80 is not a considerable matter
in these days of microsecond computers, but consider what would
happen if we had, as in a rea 1 prob lem, 100 stages . Then direct
enumeration leads to   1 0 1! - 2 - 10 additions, whi le backwards100- 30

recur s ion require s on ly 2 ~   2 ~ 1 0 0+ 1 ! =4 0 2 additions . Matters get
still worse if, instead of two alternatives at each node, there
are 10 possible links leading from each node to lO possible
nodes at the next stage--still a small number of alternatives
by real-world standards ~ In this case direct enumeration leads
to   1 0 1 ! 1 0 addit ions, whi 1 e backward s recursion requires100

10   10- 1 00+1 ! =10, 0 10 additions. With direct enumeration the
number o f computations increases exponentia 1 ly with both the
number o f s tage s and the number of alternatives at each stage .
With backwards recursion, computation increases linearly with
the number of stages and as the square of the number of alter-
natives at each stage . The relative e f f iciency of the latter

is obvious ~

In view of this relative e f f iciency, we now proceed to

rma ~ ~-xe the me+&d we have outl ined which is called dynamic.

pea g h.amming

3 . 2 THE OPTIMAL VALUE FUNCTION

We start of f with some definitions:

The 4 fag e. of the process is the position within the sequence

S ince direct enumeration is a s trawman, I am ignor ing the num-
. b w rah a 1 en v.rnrlr n1lt tn the aRvantaae o f the



of decisions of the decision presently being considered.

The 44a4e of the system at any stage is the information

necessary to render the decision at that stage.

Let n denote the present stage and x denote the present

state. Then over all possible combinations of stage and state

we define a function, V  x!, called the apCieal value,  uecfion
n

to be the extremal value  minimum or maximum! of the DN's ob-

jective associated with being in state x at stage n. It is the

best he can do from this state and stage to the end of the

process.

In order to define an optimal value function for our little

network problem we need to have a method for denoting the state

at any stage. In this case there are only two possible states

and a possible representation is x=1 if we are on the upper

branch of the network and x=O if we are on the lower branch.

The optimal value function V  x! then is the value of the mini-
n

mum cost path from the node corresponding to the pair  n,x! on.

Using our earlier reasoning we see that this function obeys the

following equation.

c  n,x! +V 1 �!

V  x! = min
n

cd n,x!+V +1�!n+1

for n=l,2,3,4 and x=0 and l. In this equation c  n,x! denotes

the cost associated with the upper link emanating from the node

 n,x! and cd n,x! is the cost of the lower link from that node.
For n=5, the equation .becomes even simpler:

V5 �! =2; V5 �! =1

This is the boundary condition at the end of the decision

process. Our backward-'thinking computational procedure involves

substituting this boundary condition into the right-hand side

of the above relation, solving for V4�! and V4�! using this
relation, and then substituting the results of this computa-
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tion into the same r.h.s. of the equation, solving for V3, and
so on. Having calculated the optimal value function for all

combinations of stage and state by this backwards process we

are ready to determine the cost-minimizing set of choices. To

do this we begin at the beginning for a change and see which

of the two expressions, c �,0! +V �! or c �,0! +V �!, equals
u

Vl�!. The branch corresponding to equality is the cost-
minimizing choice at stage l. We move along that branch to the

next stage and then repeat the process of comparing the optimal

value of the stage and state we are at to the value derived

from summing the cost of each possible link and the optimal

values of the stage and state to which each of these links

lead. In this manner, we can work our way forward through the

network determining the optimal set of choices. If we had

bothered to store all the cost-minimizing choices during the

backwards recursion, we could avoid this step and simply move

forward through the network following these choices. In real

problems, memory is usually tighter than time, so we generally

take the more roundabout method.

3 . 3 AN INVENTORY P ROBLEM

We now want to apply our newly-learned technique, dynamic

programming to a somewhat more realistic problem. Let us sup-

pose that we are a shipyard contemplating the problem of what

should be the timing and magnitude of orders for some fairly

specialized piece of equipment which is used in all or most

of the ships we produce--say, some seagoing valve. The con-

siderations are as follows. The manufacturer of the valve

savings in transaction and setup

reflect these economies' Let us

prefers large orders due to

costs and sets his price to

take an extreme example and

of order quantity is of the

assume that the price as a function

form

C y! = $100 + $150 ' y
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Here, y is the number of valves ordered. We also know from our

production schedule what the need for these valves will be in

each month over the time interval being considered, say, a year.



We assume it is given by the following table.

Nonth 1 2 3 4 5 6 7 8 9 10 11 12

Valves 8 1 2 9 12 0 4 7 2 10 1 6

If we ordered all 62 valves at the beginning of the year, we

would pay the setput charge only once. However, our accountants
tell us that warehousing, maintenance and financing costs of
carrying a valve in inventory for a month are $1.00. The problem
then is: how many valves should we order when to minimize
valve expenses, given that we are going to meet the production
line needs. Bloated by our earlier stunning success on the

little network problem, we decide to use dynamic programming.
Dynamic programming involves four basic steps:

1! Is the problem a sequential one and, if so, what are

the stages'? In this case, it is pretty clear that

the problem is a sequential one, the individual deci-
sions in the sequences being the choice of the number

of valves to be ordered at the beginning of each month.

We have 12 stages: n=l,2,...,12.

2! What is the state of the system at each stage? What do
we need to know in order to make the individual deci-

sion at the beginning of each month? Answer: we need

to know the present level of our stock of valves. Let

us denote this level, the state, at the beginning of

month n by x
n

3! Define the optimal value function. For this problem,
V {x ! is the minimum cost of buying and storing valves

n n
for the remainder of the year, given that we are at the

beginning of the nth month and we presently have xn

valves on hand.

4! Derive the equation relating the values of the optimal
value function at stage n to the values of this func-

tion at stage n+1. This derivation involves three sub-

steps:

a! What, are the alternatives at n, given that we have
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x valves? En this problem, we can order any num-

ber of valves from 0 to D -x where D is the cumu-
n n n

lative demand for valves from n on.  Given our

problem statement there is never any point in or-

dering more than D -x valves.! However, if the
n n

need in the present month, d , is greater than xn' n'

then we must order at least d -x
n n'

b! What does a particular alternative do to the value

of the state variable, x 1? What state will it
n+1

get us into at time n+1? Let y be the number of
n

valves ordered at n, possibly 0, then x =x -d +y
n+1 n n n

c! How does a particular individual alternative affect

the costs incurred in the period between the deci-

sion at n and the decision at n+l, given we are
at n and have x available? In this case, if we

n

order y � then we must pay 100+150y; if y =0 thenn n' n

we pay out nothing. In addition, through the en-

suing month we will be carrying x -d +y valves in
n n n

inventory at a unit cost of $1.00.

Putting this all together, we see that the required rela-
tion linking V and V +1 is

n n+1

0 if y =0
n

V  x ! = minimum l. 00 ~  x -d +y ! +
n n n n n

y <Y <y� n- n � n 100+150y if y �
n n

where the lower limit on y ,v , is equal to max  O,d -x ! andn'~' n n
the upper limi t, y, is equal to D -x where D = 2 dn' n n n k=n n'

This relation holds for all n=l,2,...,12 and for all
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x =0,1,...,D . The boundary condition at the end of the process,
given that we are going to ignore costs incurred after the end

of the year, can be most simply represented by setting Vlg x] g!



equal to zero for all x . The procedure then is to plug this
boundary condition into the right-hand side of the above
relation and solve for Vl2 for all xl2 V12 in turn is substituted
into the relation and we solve for Vll, and continuing in this
manner we work our way backwards to the first stage. At that
point we will have computed the complete optimal value function
table. It is now a simple matter to work our way forward
through the optimal value function tables picking out the cost-
minimizing alternatives as we did in the network problem.

Perhaps it will help our understanding of dynamic programing,
and it will certainly indicate the ease with which one can imple-
ment dynamic programming on the computer, if we display a computer
program which accomplishes this set of computations. Such a
program is shown in Figure 3-2. This particular program is
written in PL/1, but Fortran programmers will have no problem
following the logic. Readers unfamiliar with a high level
compiler can skip to the next section without any loss in
logical continuity.

The core of the program, the calculation of the optimal
value table consists of three loops: a loop over the stage
variable N, which runs from large N to small, a loop over the
state variable X, and within these two loops a loop to determine

v51ue Nunc=Con %a~ i%= f n -wn i ci. ~a~~ =i

.ble alternatives at each
this program does, is

we will often go to
inner extremization is

.ble, since it has to be

*Obviously, blindly trying all pass~
combination of stage and state, as

grossly inefficient. In the sequel,
considerable pains to make sure thi<
accomplished as efficiently as poss:
dane a large number of times.
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thecost-minimizing Y for the particular combination of stage
and state.~ After the optimal value function table, V H,X!, is
calculated, a single loop, moving forward over the stage variable,
suffices to pick out the cost-minimizing strategy. If core
memory space were a problem, we would not store the cost minimizing
choice for each stage and state, but rather compute the cost
minimizing sequence of decisions directly from the optimal



*/
*/
4/
e/
*/
*/

/*THIS PROCEDURE CALCULATES OPTIMAL VALVE ORDERING POLICY VIA D.P,
/*N=STAGE. NMAX=MAX NO OF STAGES �4 OR LESS IN THIS PROGRAM!.
/*X=STATE. XMAX=MAX NO OF STATES �00 OR LESS IN THIS PROGRAM!.
/*V N,X!=OPTIMAL VALUE TABLE. Y N,X!=OPTIMAL POLICY TABLE.
/*D  N! =NO OF VALVES DEMANDED AT STAGE N.
/*DSUM  N! =CUMULATIVE NO OF VALVES DEMANDED ZN STAGES N THRU NMAX.

DYNAMIC P ROGRAM: P ROCEDURE OPTIONS  MAIN!;
DECLARE V �5 0 100! ~ Y �5 ~0 100! FIXED~

 N I NMAX p X g XMAX p YTRIAL p D   24 ! g DSUM � 4 ! ! F IXED J
GET LIST  NMAX, XMAX, D, DSUM!;

Z~CALCULATE OPTIMAL VALUE FUNCTION BY BACKWARDS RECURSION .
STAGE LOOP: DO N=NMAX TO 1 BY -1;
STATE r,AnV: Dn g=g gO phd~

DATUM/N! >' CHOICE LOOP:
COST~0.0;
COST=100+100"-YTRIAL;

N! +YTRIAL!;
GE COST

N+1,X-D N!+YTRIAL!;
0;

V  N,X! =VTRIAL;
Y  N,X! =YTRIAL;

ND 

END CHOICE LOOP.

END STATE-LOOP;
END STAGE LOOP;

/*DETERMINE COST MINIMIZING SEQUENCE OF DECISIONS B
/*FORWARD THRU OPTIMAL POLICY TABLE.

X=O;
DO N=l TO NMAX;

PUT SKIP EDIT  ' OPTIMAL CHOICE AT STAGE
Y  N,X!, 'VALVES. ' !  A �2!

A�! !

*/
4/

Y MOVING

',N, 'IS TO ORDER' ~
,F �!,A ll!,F �!,

X=X-D N!+Y NiX! t
END;

END DYNAMIC PROGRAM;

FIGURE 3-2

/*SET BOUN DARY COND IT I ON S AT N=NMAX+ 1 ~
DO X= 0 TO XMAX;

V  NMAX+l,X! =0. 0;
END;

'=-  N'=, x:! =wg="-"-9 . 9;
DO YZRrA =MA-  O,D N!-X! TO

TP YTRXAL=O THEN ORDER
ELSE - ORDER

STORAGE COST=1. 00*  X-D  
VTRIAL=ORDER COST+STORA

+V  
IF VTRIAL~V  N g X! THEN D



the program would look like.

/+DETERMINE COST MINIMIZING SEQUENCE OF DECISIONS BY MOVING FORWARD */
/*THRU OPTIMAL VALUE FUNCTION TABLE */

X=0'

DO N=l TO NMAX;
DO YTRIAL MAX � gD  N! X! TO DSUM  N! X j

IF YTRIAL=O THEN ORDER COST=0 . 0;
ELSE ORDER COST=100+100*YTRIAL:

STORAGE COST=1. 00*  X-D$N! +YTRIAL!;
VT RIAL ORDER COST+STORAGE COST+V  N+1 g X D  N! +YTRIAL! p
IF VTRIAL=V  N, X! THEN GO TO FOUND Y;

END ~
FOUND Y:PUT SKIP EDIT  'OPTIMAL CHOICE AT STAGE',N, 'IS TO ORDER',

YTRIALI VALVES !  A �2! gF �!,A ll!,F �!,A �! ! p
X=X-D  N! +YTRIAL;
END;

END DYNAMIC P ROGRAM

Further, there is no need to keep the complete optimal value

function table in core memory. If desired, after using V N+1,X!

to compute V N,X! we can dispatch V N+1,X! to tape or disk to

be recalled at the proper time during the search forward through

the table to determine the cost-minimizing sequence. Thus, at

any particular time we need devote no more than 2 XMAX words of
core storage to the storage of the optimal value function tables.

In any event, in solving this problem our computational
effort will be proportional to the number of stages �2!, times
the number of possible states at each stage  always less than

63!, times the number of operations required in order to com-

pute the recursion relations for each stage-state combination

 certainly less than 200!. Therefore, the number of computer

operations required to solve this problem by dynamic programming

is less than 12x63xl00=75,600 which is a trivial number by

modern computer's standards. The number of conceivable policies
for this problem is of the order of 30 or about 5.3xl0

12 16

3. 4 A SHIP PRODUCTION SCHEDULING P ROBLEM

We now want to turn to a slightly larger-scale problem

which will bring out some other facets of dynamic programming

and also point out some of its limitations. This problem arose
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in a submarine yard where it takes on its most virulent form.
However, the same problem exists in all conventional ship con-
struction. We will discuss it in the submarine context.

The labor force requirements of a submarine change radi-
cally while the submarine is under construction--each submarine
demands a different mix of workers at different stages in its
construction. Let us for simplicity say that there are only
three trades relevant to submarine construction: welders, fitters,
electricians. We can represent the varying requirements for each
of these trades during the ship's construction by Figure 3-3
which under the assumption that percentage completion is pro-
portional to man-hours applied plots the number of man-hours
of each trade required to effect 1% completion as a function
of how far along in the construction process the submarine is.

tricians

0

U
m 9
4

P
0

0
I U

n5 dP

g Percent Complete
FIGURE 3-3



These variations give rise to variations in the total

amount of a particular trade demanded at any given time, even

if the yard is booked to full capacity. The submarine yard in
question noted that at times certain trades would be working
considerable amounts of overtime and other trades would be

laying off or underemployed. The personnel people were com-
pletely confused by the situation and had no idea what consti-
tuted a rational labor force policy. Since the periods of the

oscillation were of the order of months, in some circles they

were attributed to seasonal factors.

The yard kept track of the completion histories of all pastjobs. They were as displayed in Figure 3-4. "Usual" Schedule
Most Delayed
Schedule

Due Date

Start Time ~7

FIGURE 3.4 POSSIBLE PRODUCTION SCHEDULES

Any nondecreasing curve in the shaded area whose slope is
everywhere less than the maximum slope in a feasible construc-
tion schedule. The general policy then in effect was to advance

the construction of each submarine at an average rate with the

exception that , if a submarine got behind schedule, extra effort
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was shifted to that. submarine in order to insure its completion
by the deadline. It should be clear that considerable flexibi-
lity existed with respect to construction rates. The question
then became: Would it be possible to juggle the construction
schedules of the various submarines in such a way as to smooth

out the vari'a:sons= in.� . :die: � ahmaM= Qn Eric=- va~x'aud=-draaM".

For reasons which will become clear, the problem of deter-

mining that coupled labor force/production schedule policy which
minimizes the total labor costs of constructing the submarines

was judged to be computationally infeasible. Thus, the analyst
responsible for developing the improved production schedules fell
back on a subproblem. To wit, given specified levels of each
trade T.,i=1,2,3, where it is convenient to express the T,'s in
terms of the regular man-hours of trade i available in a two-
week period, determine that production schedule for each sub
which collectively results in the lowest loss due to yardwide
fluctuations in the level of demand for each trade. At the time
that this analysis was done a reasonable measure of this loss
sapid to Se the sum of the cost of overtime plus the cost of

i iiiiiiiiiiiiii'6f, , ''r'kguil'kr'll'zhhh'4h6ur'51'6fll that!.t'r5d@' 'h0t0W3! ly...~e'44irg4, by tAAl IIIIIIIIIIIIIIIIIIIIIlIIII

production schedule.

Let us suppose further that we have three submarines to be
constructed, each with given deadlines. We are going to review
our construction progress periodically, say, every two weeks.
Thus, the stages of the process become the review times. If we
are scheduling construction over a three-year period, we would
have some 75 stages. We describe the state of the system at
any given time by the percentage completion of each of our sub-
marines,  Cl,C2,C3!. Note that. in this problem the state must
be described by a number of variables  a vector! rather than a
single number. In reviewing the state of completion in percen-
tage terms, we round off to the nearest even integer. Thus, at

3any particular stage we can have as many as 50 =125,000 states.
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Given a particular combination of stage and state, what
are our alternatives? We have control over the completion rate

of each submarine for the next two weeks. Denote the completion

rate ordered on submarine k by r>. In general, rk can be any-



ules which rninirnizes B summed over all periods.
n

Reasoning as before, we define V  Cl,C2,C3! to be then

minimum overtime/undertime cost attainable for the remainder of
the period being scheduled, given that we are presently at the
nth review period and the state of completion is characterized
by  Cl,C>,C3!. The recursion relation for V is

~n 1' 2' 3' 1' 2' 3

V  Cl,C2,C3! = minimum
 rl,r2,r3!

' Vn+1 C1+rl C2'r2 C3' 3'

where the minimum is taken over all feasible rk's.

This recursion relation holds for all n=1,2,...,N where N

is the review corresponding to the last due date. No costs

 given our problem statement! are incurred thereafter, so we
can represent the boundary condition' by V 1 C1,C2,C3!=0 for
all possible  Cl C2 C3! We can now compute the optimal value
function as before by backward recursion.

Now, however, this computation is no trivial task. We have
some 75 stages, as many as 125,000 possible states at each
stage, and the calculation at each stage and state will involve
several hundred computer operations. Therefore, we are talking
about. some 40 x 10 operations, which even on a microsecond8

rnachine vill require about an hour. More important, at any

point we must store the values of the optimal value function for
all possible states for that stage which we have just completed
 n+1!, as well as those for the stage we are presently working
on  n!. This will require 250,000 words of memory. Thus, this
is about as large a problem as can usefully be tackled with
present machines. Consider what would happen if we had four or

4
five submarines. For four the number of states is 50 , for five

5it is 50 or 312 million. In short, dynamic programming often

breaks down in the face of rnultivariable state descriptions, for
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the number of possible states increases exponentially with the

number of state variables.

The approach does have its good points. It is almost com-

pletely insensitive to the form of the cost functions. We could
have as many trades as desired, and additional constraints on

the set of possible schedules help rather than complicate mat-

ters. However, the greatest advantage of dynamic programming's

apparently brute-force approach to computation lies in all the

extra work that we had to do in calculating the entire optimal

value function table. Suppose for some reason the completion

rates we ordered at some time are not achieved. We ordered

r j r2 1 3 but two weeks l a ter we f ind we have achieved rl, r2 and
r3. There is no need for recalculation. We simply refer to
that part of the optimal value function table at stage n+1 corre-

sponding to  Cl+rl C2+r2 C3+r3! rather than the entry at
 Cl+rl,C2+r2,C3 r3! where we expected to be. In short, we have
the optimal set of schedules for whatever situation we get our-

selves into. But this is exactly the information we need in

order to fold back decision trees under uncertainty. And, of

course, dynamic programming ability to handle decisions under

uncertainty is the real reason why we have introduced the con-

cept in the first place. In order to see how we can apply dy-

namic programming to decisions under uncertainty, we will return

to our simple little network problem in the next section.

However, before we do this, we must comment on a basic error

which has crept into the analysis of this problem. Given the

above discussion of the computational feasiblity of this algo-

rithm it is clear why the analyst viewed the more complete prob-

lem of the combined choice of boih labor force levels and pro-

duction schedules to be computationally infeasible. If the

labor force variables were to be determined and not regarded as

given, then in order to describe the state of the system we

would need not only the present percent completions of each of

the subs, but also the present, levels of the labor force in each

trade. If we had three trades and three subs, we would need



six state variables and computationally the problem would be
completely out of hand. So the analyst's decision to concen-
trate on the subproblem of determining the optimal production
schedules g~ve,n. a specified level of each trade through time was
a reasonable one. He could then vary the labor force parametri-
cally and observe the results. However, given that the levels
of each trade are fixed, regular time, 40-hour payroll costs
are fixed and not subject to the choice of production schedule.
From the point of view of the subproblem chosen for analysis,
regular-time payroll costs are sunk; they cannot be varied. In
fact, the only costs which are under control of the subproblen's
decision variables are the overtime costs--these will vary with
the choice of production schedules even if the regular-time
labor force is fixed. By including the costs of undertime in
his objective function, the analyst arrived at an algorithm
which, blindly following his orders, often accepted a higher cost
in overtime  a real loss to the yard! in order to save some

undertime  a fictitious loss since the nan gets paid the same
whether he works or not!. In short, once the problem was con-

strained to a choice of production schedules graven a ape,@~fied
tabac  Once only the cost of overtime should have been included
in the objective function. The proper objective, given the prob-
lem statement, is that set of production schedules which mini-
mizes overtime costs. The necessary adjustments to the recur-

sion relations will be obvious to the reader. They involve

le of the quite

costs in a problem

ed--in the econo-

fixed and variable

costs for one de-

. have seen, such

.es. The reader by

.nalyst in this

The above error is a fairly subtle exam'

common error of failure to distinguish which

actually depend on the decisions being analy~
mist's terms, failure to distinguish between

costs, failure to realize that what are fixec
cision are variable costs for another. As w<

an error is not without real-world consequen 

now has probably guessed that the misguided ~
particular problem was the author.
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alternate.

5 D 2 5

.9a: .-~j,8,.
rX

Stages
FIGURE 3-5
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3. 5 DYNAMIC PROGRAMMING UNDER UNCERTAINTY

In order to follow up on the earlier observation that some-

what brute-force approach of dynamic programming, which ends up

calculating the optimal strategy for every possible situation

we might get into, yields us just the information we need to

fold back decision trees under uncertainty, we return to the

simpler context of our little network problem. In Figure 3-5

we have reproduced Figure 3-1 with one exception. On each

branch emanating from every node we have placed a pair of addi-

tional numbers. The first, such number represents the probabi-

lity that we will actually traverse this branch if our decision

is to take it. The second number represents the probability

that we will take this path if our decision is to take its

might imagine the following process. After we get to

in the network, we somehow decide which branch we should.

ake. After making the decision, Nature  the weather,

ons, technical bugs, competitors! or some other perverse

lips a coin which says, "O.K., take the branch you

ith probability given. by the first number in the pair

Thus, we

any node

like to t

labor uni

object, f

chose," w



on that branch and with complementary probability says, "Sorry,
go the other way." This complementary probability is the second
number in the pair of the alternate branch. These probabilities
may either be objective  based on large sample data! or subjec-
tive  based on the DM's betting odds!.

Well, this is certainly a disheartening situation. We
realize that we can no longer guarantee ourselves the minimum
possible traversal cost of 9 as we could under certainty. In
fact, we can say that, even if we pursue the formerly optimal
strategy, we may suffer a relatively large cost while someone
who does no thinking about the problem at all may be lucky and
realize a lower cost. As we have seen, under uncertainty we
must distinguish between a good decision and a good outcome. In
order to identify good decisions we must specify an objective.
A "good" decision then is one that is consistent with the speci-
fied objective.

For now let us assume that the DM's objective is to mini-
e the expected cost of traversing the network, that is, the

DM is an EMV'er. We have already seen that this criterion im-
plies a very specific attitude toward risk, an attitude to which
roost people do not subscribe. However, we have also seen that
often the EMV'er's strategy is a reasonably good strategy for
almost all DM's to follow especially if the amount risked is
small with respect to the DM's asset position. Later we will
apply DP to non-EMV preference functions. Unfortunately, this
will involve a considerable increase in computational effort.
Therefore, wherever possible we will attempt to fall back on
expected value decision-making when using dynamic programming.

How can we use dynamic programming to calculate the strategy
which leads to rninirnum expected cost? The key idea of dynamic
programming is to think backwards. Start at the end of the prob-
lem and work forward. What is the optimal value of being at
each of the last two nodes, H and I, given our new criterion?
For these two nodes, the problem collapses. Neither we nor

Nature has any choice and the expected cost of traversing
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each of the last two links is 2 and l respectively. Thus,

the minimal expected cost for the rest of the process, given

that we are at node H  state l and stage 5!, is 2 and the

minimal expected value of being in state 0 at stage 5 is l.
Let us define a new optimal value function, denoted by V  x !n n

as before, but defined to be the minimum e.xpe.eke.d cost for
the remainder of the process if we are presently at stage n

and in state x . By this definition, V5 l!=2; V5�!=1. We
n

are now ready to move back to stage 4 where things get a

little more interesting. Let us consider the situation given

that we are in state l at stage 4, i.e., we are at node F.

V4 l! is the minimum expected cost of getting from F to Z.
If at F we decide to take the upper branch, one of two things

can happen:

 a! With likelihood .8 we go to H at a cost of 5;

 b! With likelihood ~ 2 we go to I at a cost of 2.

In either event we surely will do the best we can from

whatever state we end up in, but the value of the best we can

do in either of these two states is by definition V  l! and

V5�! respectively. Thus, the expected cost of taking the upper
branch at F and then doing the best we can, given whatever hap-

pens, is

.S [5+V5  !!+'2I: + 5

which from above equals

. 8 �+2! +. 2 �+1! =6 . 2

In a similar manner, we can obtain the expected cost of try-

ing to take the lower branch from H. It is .5�+1!+.5�+2!=5.0.

But we wish to make that choice which minimizes the expected

cost of going from H to Z. Since 5.0�.2 the indicated choice

is toward H and the minimum expected cost of this choice, the

optimal value associated with F, is 5.0. As before, we place

this value next to its node in a circle. Similarly, we can

calculate the minimum expected value associated with G,V4�!.
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. 7  8+2!+. 3 �+l! =8.5

V4 �! =min

.9 �+1!+.l  8+2! =5.5

=5.5

and the indicated choice is the lower branch. By now the basic

recursion should be clear. If we let Pr x ljx ,u! denote then I 1 n'

probability of getting to state x l at the next stage, given
that we are presently in x and we choose the upper branch and

n

if we let Pr x ljx ,d! equal the analogous quantity, given we
n+l n'

choose the lower branch, the general recursion relation is

Pr  l j xn,u! [cu  x ! +V +l  l! ]+Pr � j x ~u! [cd x ! +Vn+j �! ]
V  x !=min

n

Pr � j x,d! [cd  x !+V l �! ]+Pr  l j x,d! [c  x !+V l  l! ]

Plugging V4 x ! into this expression we calculate V3 and so on.
n

Continuing on in this fashion, using the recursion, we work
our way back to node A. The corresponding optimal value is
l3.05. Despite the fact that the costs have not changed, we
have lost on the average 4.05 units of cost per traversal due
to the fact that we can no longer guarantee that our choices

will be carried out. The optimal policy has also changed even

though the underlying costs have not changed, demonstrating the
obvious fact that our best choices under certainty are not nec-

essarily our best choices under uncertainty even if we are
EMV'ers. Note also that we cannot tell exactly what path we

will take before the actual occurrence of the process. The ex-

ception is the first choice. We know we are going to choose to
go up. However, after making this choice we have to wait to see
what happens. After Nature makes her choice, then we can refer
to the optimal value table and see which choice we should make,
then it's Nature's turn, and so on. Under uncertainty, we can

no longer write a program which not only computes the optimal
value table working backwards, but also before the fact works
forward through this table picking out the cost-minimizing
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choices. Under uncertainty, it doesn't make any sense to make

up your mind before you have to. Dynamic prograrmning accounts

for this fact and generates a strategy through which we take

advantage of the information which sill be available to us at

each stage in the future  in this case, what node we are at! and

allows this information--the state of the system--to feed back

on the decision which will be made at that time.

3. 6 SUBMARINE PRODUCTION SCHEDULING UNDER UNCERTAINTy

We are now in a position to apply dynamic programming under

uncertainty to the sub production scheduling problem.  We could

also use it in the inventory problem where the prime uncertainty

might be how many valves will actually be needed.! Let us re-

strict ourselves to the situation where between any two review

periods only two things can happen. The ship progresses at some

positive rate  say, 2% biweekly! or not at all. Also assume at

each review period we have two alternatives--order production

at the positive rate or order no production. In the latter case,

we get no progress with probability 1.00. In the former case,

we achieve our positive rate with probability p  Ck!, which may
n

depend on the present state of completion, and we obtain no prog-

ress with probability 1-p  Ck! ~
n

Let r =l mean that we order progress on sub k in the en-
k

suing period and r =0 mean that we call for no construction on
k

this sub during that time. Assuming that we choose to minimize

expected value, the recursiorr for the optimal value function

becomes:
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Bn  Cl,C2,C3 «1 rl r 1!+
pn  Cl! pn  C~! pn  C3! Vn~l  cl+r, C2+r, C2+r, C3+r!
+ �-pn  Cl! Jpn C2! pn  C3! Vn+1  Cl, 2+, 3 !
+. ~ .. +.... +. ~ . ~ +.... +....

+� p  C
V  C,C,C3! =min

'-1 "2 "3' B  Cl,C2,C3,'1, 1,0! + . ~ . ~
n

B  Cl,C2,C3,,o,1!+
n

B  Cl P C2 I C3 0, 1, 1! +
n

B  C 1 gC JC3 «1 /0 f 0! + ~ ~ ~ ~
n

B  Cl gC2 C3 0 g0 1!+ - ~
n

B  Cl,C2 /C3,0,1,0!+
n

B  C C ~C 0 ~0,0! +V  C ~C ~C !

This is the basic recursion.* However, several modifica-

tions are in order with respect to boundary conditions. For one
thing, we can no longer guarantee that we will with certainty
meet the due date on each sub. Therefore, we must explicitly
specify the penalties for not. delivering on time and incorporate
them into the stage return. That is, for all Ck<100% and all
t >D then we must add an overdue penalty, H Dk-t ! to the stagen k k n
return. By making this penalty very large for large Dk-t we
can guarantee that a sub will be very late with low probability.

3 ~ 7 DYNAMIC PROGRAMMING FOR NON-ZMV'EBS

Up to this point, in using the recursive reasoning of dy-
namic programming to help us fold back decision trees resulting
from incomplete knowledge, we have assumed that the DM is an
expected value decision-maker. Unfortunately, as we have seen,
this is not always a tenable assumption. Many times a DM's
risk preference constitutes the crux of the matter and must be
included explicitly in the analysis.

«««««««««.gQ'bi y+« ~ 'm 44m n ewe vas.nnr se. hB xtA .hogan..mphil. f v e.R .hxz harrinrr ihe----- � ---- � --=«ate= -s;� ..=-;r~rrr== [xÃ=-:gp ~««6'= ~ % vl IvRKN =jgL<g-,-~�«. � � -=-- ---" � -w~ ~...~4vKKt«eM« ~ ««
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In this section, we shall see how we can use dynamic pro-

gramming to help us fold back certain decision trees, given

a non-EMVing preference function. To do so we will go back to

our by-now-familiar little network problem. But now we will have

to recast the problem slightly.

Let us suppose an investor has z units of wealth. These

units might be in thousands or perhaps hundreds of thousands of

dollars. Somehow he finds himself in the situation where he must

traverse our little network from A to Z paying the associated

costs in the same units of wealth. Our DM is a Bayesian, has

accepted the axioms, and the probabilities shown in Figure 3-5

are his probabilities. We have obtained this DM's preference

function for wealth over the range of 100 to 0 units. This func-

tion. is shown in Figure 3-6. It exhibits considerable risk-

adversion; however, this risk-adversion decreases with increase

in wealth--that is, the premium that this DM would pay to insure

himself against an unfavorable gamble decreases as his wealth

increases. Our problem is to develop an algorithm which gene-

rates that strategy which gets our DM from A to Z in such a man-

ner as to maximize the expected m-value associated with the DM's

wealth after the traversal.*

Since the DM's risk adversion changes with his asset posi-

tion, it is clear that we can no longer divide the overall costs

of traversing the network into the immediate costs of traversing

the next link and the costs which will be incurred in traversing

the links further in the future and sum the two, just as in

analyzing Joe's problem, given Joe's preference function, we were

no longer able to assign a cost to a branch and add that cost

to the cost of following a certain policy when we came to that

branch in the folding-back process. Instead, we were forced to

evaluate all the costs associated with a particular path through

the tree, assign the total of these costs to the terminal node

"See reference 18 for a more detailed discussion of decreasing
risk adversion.
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FIGURE 3-6

A DECREASINGLY RISK ADVERSE PREFERENCE FUNCTION
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.2 Asset Position in Units of Wealth
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of the path, apply our preference function to this total, and
then and only then start folding back. What we need is a de-

vice through which we can do the same thing and which at the

same time allows us the computational advan ages of dynamic pro-

gramming.

Remember the definition of the state in the dynamic program:

the information we need to know in order to make the next deci-

sion given the present, stage. In the simple expected value net-

work problem all we needed to know is where we are at the present

stage. Given that knowledge, we were able to devise an expres-

sion for the costs of getting the rest of the way. Given a non-

EMV'er's preference function, at each stage we need to know

not only where we are, but also the DN's present wealth, given

the costs he has already suffered, for changes in wealth will in

general change his evaluation of the alternatives still facing

him. Let the DM's present wealth at any stage be denoted by z.

In order to see that knowledge of both the DM's whereabouts and

his current wealth at any stage is sufficient to construct a

recursion relation for the optimal value function we reason as

follows.

Let qs suppose the DM is presently at node H, that is, stage

number 5 and at the upper node  x=1!. Suppose further that the

DN's present wealth after paying for the earlier portion of the

trip is l0 units. Given this situation, the expected rr-value-

maxirnizing decision  the only decision in this case! is to take

the remaining branch to z decreasing his wealth by 2 for a final

wealth position of 8, which final outcome has a x-value of .57
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 from Figure 3-6! . Hence, the maximum expected

ciated with node H, given z=l0, is .57. We can

simple computation for all possible z between 0

Call the resulting list of numbers V5 l,z!. We
thing at I. Call this list V5�,z!. The lower
two lists is shown in the following table.

~-value asso-

repeat. this

and. l00 at H.

can do the same

portion of these



TABLE 3-1

vr-VALUES AT STAGE 5

VS  l,z!VS  O,z!

We can now turn, our attention to stage 4. Suppose the DM is

at F and. his present wealth is 12 units. What is his optimal
choice, and what is it worth? He has two choices and, being a

confirmed. Bayesian, we know he wishes to make that choice which
maximizes expected 7t-value. If he decides to go from F to H

with probability .8 he will indeed go from F to H, in which case
we will find that at stage 5, x=1 and z=l2-5, but we know the

maximum expected m-value associated with this state of affairs.
From the rightmost column of Table 3-'1, it. is VS�,7!=.484.
On the other hand, even if DM chooses to go from F to H, with

probability .2 he will actually go to I and find himself in
state  x=O,z=l2-2! at n=S which has an expected m-value of

VS�,10!=.572 associated with it. Thus, the expected v-value
associated with the choice to go from F to H given that the

DM's wealth at F is 12 is:

AI A84l+..P f.%7>L=.. %AX

on to Similarly, the expected m-value associated with the decisi
go to I in this situation is:

. 5  . 572! +. 5  . 484! =. 528

to I The optimal decision in this case is to attempt to gc

and. the expected preference associated with this decisionis
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.272

.358

.412

.452

.481

.511

.534

.554

.572

.000

.272

.358

.412

.452

.484

~ 511

.534

.554



.528. This is the m-va3.ue of being at node F with 12 units of

wealth. By a similar process, we can obtain the maximum expected

vr-value for each possible value of z at F and then for each pos-

sible value of z at G. It should be clear by now that we can

repeat this process for D and E and then B and C and finally

-~KlCllLa~ MM- HQ~31flQIfF. ~8+M4nM+ W~~D 6 dBSUV" '-cfC8i. = vV~+za s38<rM

at A for all possible z, i.e., all possible initial wealth posi-

tions ~

This process can be described by the following set of recur-

sion relations. Define V  x,z! to be the maximum expected pref-

erence attainable if at stage n we are at node x and our present

wealth is z units. then the boundary condition is V  x,z!=m z! for
5

x=0,1 and all possible z while for stages 5 through 1 we have

Pr � ~ x,u! V 1 �, z+cd  x ! ! +Pr �   x,u! -V 1 �, z+cd  x ! !

Pr �   x,d! V  O,z+c  x ! !+Pr �I x,d! V � pz+c  x ! !
V  x,z!=max

The too, line af the riant,=hand .side M this wxnression . is the best

we can do in terms of expected m-value if we decide to go up at

n and x; the bottom line is best. we can do if we choose to go

down.
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Notice that this recursion relation has no immediate costs,

the effect of the immediate cost being accommodated by the change

in the  expanded! set of state variables from which state variables

we can calculate the preference associated with the path when

we come to the terminal node as the boundary condition indicates.

In control theory terms we have transformed the problem into a

terminal control problem--a problem in which the value of the

objective is a function only of the terminal state. Almost any

sequential optimization problem can be transformed. into a ter-

minal control problem by suitable expansion of the state space.

However, in general, whenever the objective function is sepa-

rable, as it is for the EMV'er, this is unnecessary and compu-

tationally unwise, for as is clear from this example expanding

the state space generally increases computational effort and



demands on memory spaces combinatorially. Zn the simple problem

at hand, it has increased computational effort over lOO-fold.

However, the extra effort is not completely without compen-

sation for when we are finished we will have calculated the

maximum expected vr-value and by implication the corresponding

policy for all possible initial wealth positions. The DM can

determine his optimal strategy by entering the optimal value

function table at stage l with his initial wealth, whatever it

may be, choosing to take that decision for which equality holds

in the ~~ w~mf imn, Phev wai.t hand ~e .what M~Jv-.e ~ex ~

stage l, and then refer to Xhe entries in the opti.'mal value

function table corresponding to the state that results' And

so on.

The optimal value function table associated with the pref-

erence function of Figure 3-6 has been calculated. ln this

case, it turns out that no matter what the DM's initial wealth

position is between 25 and 100 he should follow the EMV'er's

policy, as shown by the arrows in Figure 3-5. For this net-

work, the EMV'er's policy not only maximizes expected monetary

value, but happens also to be a low-risk policy. This will not

be true in general. lf a DM were sufficiently risk-prone he

would switch back to the optimum policy under certainty which

gives him a slightly higher change at the minimum of all possible

losses 9 than the EMV'er's strategy does.

the results of these policy calculations are hardly

earthshaking, the optimal value table itself still holds some

interest. Consider Table 3-2, which shows a range of maximum

expected preference values at node A over a range of initial

wealths together with the corresponding certainty monetary equi-

valent.

The final column in this table shows the difference between

his initial wealth and the CME associated with his optimal

strategy. This is the amount this DM is willing to pay to avoid

having to traverse the network. Note that for high initial



TABLE 3-2

Vl  ~ ,z! z -CME

14. 1

13.3
13.1

13.05

10.9

36 ~ 7

61.9
87.05

.617

.811

.907

.973

25

50

75

100

expected cost of traversing the network is about 13.05 units.
However, for low initial wealths, the DM is willing to pay a
premium of the order of ten percent of the expected cost of
traversing to avoid the risks entailed. There is always the
possibility he will be very unlucky and suffer the maximum
possible cost which is 23 units, which if his initial wealth

This completes our introduction to dynamic programming.
In the following chapters, we will attempt to use this often
powerful technique to address some of the complex sequences of
decisions facing marine decision-makers.
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is only 25 would just about wipe him out. Behavior such as that
shown in Table 3-2 is what we mean by decreasing risk adver-
sion. Of course, many people do not exhibit decreasing risk
adversion.



CHAPTER 4

INVZS TMENT IN MARINE TRANSPORTATION

In this chapter we will attempt to apply the methodology

of Chapters 2 and 3 to investment in marine shipping ser-

vices, to the buying and leasing of ships. Unlike the problem

we made up for our hypothetical friend Joe, in marine trans-

portation the most important uncertainties are not on the cost

side but rather on the revenue side. Such uncertainties take

their purest form in the ship charter markets. The ship charter

markets are the arenas where buyers  oil companies, grain and

ore exporters, large-scale shippers in general! and sellers

 shipowners! bid for and offer ship services for varying lengths

of time. The contracts or leases consummated in these markets

are called cha<Cech or $ixXuzeh. The vessel which is leased is

sai.d to be c.hawse.ce.d.

These markets are in many respects the most interesting and

certainly the most. volatile economic phenomena associated with

marine decision-making, combining the romanticism of the sea

with a cast of actors which include some of the world's wealthi-

est and most publicized men. Few commodity prices fluctuate as

violently as the unit prices in these markets which are called

the chacCee eaXea. The spot Cankers rr.ale, the unit price of an

immediate, single-voyage rental of a tanker, has been known to

increase  decrease! by as much as 500% in a matter of months.

As a result, immense fortunes can be made and lost in these mar-

kets in very short. order. These fluctuations depend in an unpre-

dictable manner on the policies of unstable governments, the

location of future discoveries of oil and minerals or, in the

grain markets, the vagaries of the monsoon, and the ship-order-

ing policies of fellow shipowners. Clearly, in the ship charter

markets we have an ideal subject for our ideas on how to handle

uncertainty.

4. 1 THE INDEPENDENT owNER' s oPERATING ALTERNATIvES

We will begin by studying the vessel employment alterna-

tives facing an independent shipowner operating in, say, the
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tanker charter market." After all, we cannot logically decide
whether or not to invest in a ship until we have some idea how
we would. operate this ship if it were bought and what we would
obtain from these operations. Perhaps the first analytical
treatment of the ship employment problem was by Svendsen, ref-
erence 19. Svendsen assumed a somewhat simpler cost structure
than we will use and, more importantly, he assumed no uncer-
tainty. He concluded, however, by pointing out that quantities
which cannot be predicted with certainty were of overriding
importance. "...it will be seen that these known factors do
not play such an important role in the calculations as do the
estimates on what the future holds." Nore recently, Nossin,
reference 14, tackled the layup problem under the assumption
that revenues  charter rates! were given by a symmetric random
walk. Given a simple cost structure, this hypothesis and EMVing
leads to decision rules of the form: lay up when rates drop
below x, come out of layup when rates rise above y. For the
more general situations considered herein, such rules will not
in general be optimal.

We begin by considering, with Svendsen, a single vessel
operating in a charter market which may be used in only one
trade and on only one route. We might, for example, imagine a
i~amV«eeh4=h fez,gme «aamv is «watricted to the Persian Gulf-
Nortaern European run. Since 60% of. tanker ton-miles move on
this route and, more importantly, since the rates on othe" routes
will tend to equilibrate at levels which return the owner. of: a
particular tanker the same amount on every route,"* this may

" An independent owner is one who has no proprietary shipping
requirements of his own.

**Of course, one has to base the computations on the right route
for the ship in question. For example, in the winter months,
a shallow draft tanker  '<38'! can generally earn considerably
more on the Venezuela-Delaware Bay route--a route this class
of tankers has to itself--than it can be competing with the
big guys on a deep draft route. In general, one should choose
as the route upon which to base the calculations a route upon
which the ship is as profitable as on any other route.
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not be as confining an assumption as it might at first appear.

This restriction will allow us to assume that the duration of a

round-trip voyage is a constant, say, hN months. We further

assume that every dN months, that is, at the completion of every
round-trip voyage period, the ship's owner reviews the present
situation with respect to the charter market and the status of

his ship and decides which of the alternatives available to him

at that review period he is actually going to follow. Let us

begin by assuming that the ship's owner is an EMV'er and, there-
fore, his objective is to operate the ship through time in such
a manner as to yield maximum expected present valued profit."

Later on we will tackle the non-ENV'er's problem.

Xn general, the alternatives open to the shipowner at the
end. of any round-trip period will depend on the present status
of his ship. If at any review period the ship is laid up, his
alternatives are: leave the ship in layup, bring it out of lay-
up, and. charter the ship for 1,2, or more voyage periods or
scrap the ship.** If the ship is presently in commission and is
not already fixed at the time of the review, he can charter it
for any of a number of voyage periods: hold the ship on berth
 not accept present charter rates!, lay it up, or scrap it. If
the ship is operating but is already committed at the current
review period, then he has no immediate alternatives. In real

life, he can accept any of the number of forward chartering
contracts which may be offered him, committing his ship still
further into the future.*** If, at what would be a review

* Present value is defined on page 121 Readers not familiar
with the concept should consult any 4e,cev.C book on capital
investment.

** More generally, the final option is the sell the ship. Here
we are assuming that, if the ship is expected to at least
recover variable costs in the future, the market sales value
capitalizes these earnings, so only if the ship expects to
be unprofitable will the DM wish to sell, in which case sales
price equals scrap value.

~**A forward charter is a fixture commencing some time in the
future.
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point, the ship has already been scrapped, then the owner has,

of course, no options with respect to the particular ship in

question.

Thus, in actual fact there is in general a rich variety of

options open to the shipowner at any particular review point.

However, in our abstraction of this problem we are going to have

to limit somewhat these options. Specifically, we will rule

out forward chartering. This simplification can be replaced by

other more general sets of assumptions, if desired, but the ex-

position of the resulting algorithm becomes quite cumbersome.

Under the above restriction, the set of charter alternatives can

be represented by M different options corresponding to accepting

an m-voyage charter where m runs from l, the spot charter, to

some maximum charter length in voyage periods M*. Given this

restricted set of options, the status of the owner's ship at

any review point, t , can be represented by a variable X run-

ning from -2 to M-1 defined by

Given this notation and the above restrictions, the options

available at any review point as a function of X are:

Status of ~Shi Alternatives

X = -2

x = -1

X = 0

None

Leave laid up, recommission

Lay up, hold on berth, charter
for k voyage periods, scrap

X = k 1<k<M-1 None

*We can pick any M we like. However, as we shall see, computa-
tional effort grows with the square of M/AN. Zn a typical prob-
lem, dN might be 2 and M=30 or five years. That is, if
M=30 and QN=2, we have allowed the owner the options of char-
tering for pretty much any length of time between two months
and five years'
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X = -2

X = -1

X = 0

X = k

if ship has already been scrapped at
n

if ship is presently laid up at. t
n

if ship is available for immediate charter at t
n

1<k<M-1 if ship has k voyages left on present

contract



4. 2 THE STATE OF THE MARKET

In making the decision at any review point, the shipowner

will note not only the present status of his ship, but also the

present state of the relevant charter market as well as his

present feelings about the future. Now there are a number of

approaches one might take to describing the present state of the

market and incorporating the shipowner's hard-won experience and
knowledge concerning the market into the problem. Xn this
chapter we shall discuss two possible approaches:

1! A formulation of the problem based directly on the
current value of the spot charter rate.

2! A formulation based on the demand and supply variables
upon which the rates depend.

4.3 A NARKOVIAN MODEL OF THE CHARTER RATES

The approach through a model based directly on the spot

rate is conceptually the simpler of the two, so let's start. with

it. In using this tack, we ask the DM to choose a  very small!
number of variables which, ab  ac aa be. ih concertized, describe

the present state of the market at any particular review time

and upon which he is willing to base his feelings about where

the market vill be at the next review point. He might, for

example, choose the following three variables.

1! The current. spot charter rate at. t ,Rl n!;*

2! The rate of change of the spot rate AR =R  n!-R  n-1!;
1 1 1

3! The amount of transport capability on order as measured

by the time to launch in voyage periods, L, of a ship

ordered in the present review period.

Other combinations of market variables can be used but this

is as good as any place to start.

In order to make the size of the state space finite, we

will have to assume that Rl is a discrete variable. That is,

*When speaking about, the current values of state variables we
will suppress the stage argument unless it is not completely
redundant, that is, generally we will write Rl for the current
value of the spot rate rather than Rl n!.
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assume that the shipowner is willing to act as if only a finite

number of spot. rates are possible, for example, $5.00/ton,

$6.00/ton,...$15.00/ton. In other words the owner is willing

to round off the spot rate to the nearest dollar or, if need be,

to the nearest 50 cents. If this is the case, then AR1 being
the difference of two discrete variables is also discrete.

Now, in order to make a decision between a single-voyage

charter and an m-voyage charter, we will need to know the cur-

rent m-voyage charter rate, R .* This problem could be handled

by adding R for all possible m to our list of state variables.

However, this has obvious computational disadvantages which we

would prefer to avoid. Zannetos, reference 22, has made an ex-

tensive empirical investigation of the behavior of term charter

rates. He postulates that the important variables determining

their value at any time are:

l! The current spot rate, Rl
2} The rate of change of the spot rate, hR1**
3! The backlog, L

4! The duration of the charter, m

5$ The size of the vessel~

6! The amount of the fleet presently idle

7! Change in amount of the fleet idle

8! New orders

9! Lead time between charter agreement and vessel delivery

Variable 9 he finds to have no significant effect on the

term rates. Besides, it presumes forward chartering which we

have ruled out. In the next section, we will argue that vari-

ables 7 and 8 are dependent on variables 1 and 2, in the sense

that, if one knows the spot rates at t and t , then one can
n n-l'

* We are tacitly assuming that the term charter is of the con-
secutive voyage variety. This involves no loss in generality
since, once a route has been specified, regular term charter
rates can be transformed into equivalent consecutive voyage
rates and vice versa.

**Actually Zannetos used a discounted sum of the rate changes
observed in the last four periods with a discount factor which
was large enough so that the resulting index, like AR1 is
mainly a function of the difference between R  n! and Rl n-l!.
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estimate the amount of the fleet that is idle at. these two

points in time quite closely. Finally, Zoller, reference 23,
has found that variable 6, the amount of tonnage ordered in a
particular period, is primarily a function of the current spot
rate and the size of the order book. In short, ruling out vari-
able 9, we are suggesting that of the first eight variables
only the first five can usefully be regarded as independent
and hence a model of the long-term rates based on the first

eight variables is essentially a model based on the first five.
But the current values of the first five variables are known

at any combination of stage and state and alternative charter

length. Hence, from these five variables, we can use the
Zannetos model to predict the present values of the term charter
rates. Xn sum, we assume that the DM is willing to postulate
two functions:

1} 0 Rj DR1,L! which yields the DM's estimate of the
amount of tonnage which will be ordered by the ship-
owners operating in his charter market in the present
voyage period.

2! R  Rl,AR1,L! which yields the DM's estimate of them

m-voyage charter rate which will exist in the market

for his ship if the current spot rate, rate of change
of the spot rate, and launch time is  Rl,AR1,L!.

4I4 THE ALGORITHM

With all the above assumptions, we are in a position to
develop a dynamic program for determining that vessel employment
policy which will return maximum expected present valued profits
to the owners Given the above description of the market, at any
decision point, t , the present state of the ship/market system

n

is described by the value of the vector  X,Rj BRltL! ~ Let n
be the age of the ship in voyage periods. Let N by the maximum
age of the ship in voyage periods which we will consider. That

gqq gg old that &Ps vrnh~hi ~ z+~rp> h >be s'hie .'. 13

gg !g!gggggggtttttttttttttIIIIIIIIIIIIItggJQJJQ I / II/I I g UJJ JJ JJ J~QJglJJJ JJ JJ JJ JJ JJ JJQJJJ JJ JJ JJ JJ JJ JJ JJ JJ P P P PQJ lgl!g! l!!H!ggll g/ggPH!c ~ a age .. torei w' e,~�, aye;,pagyppe.. x.a~! ~ ~

put' 5: bounddM-'-'co'reedit:on on"the� . prq4ggg., we--will arbitarily

no mat:er assume- that if the--ship--reacBd5--ajar--N"we:-will scraj it
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what the present state of the market is. If an N corresponding

to, say, 30 years is chosen, such a restriction will have very

little effect on the resulting policy.

Associated with each of the alternatives at any particular

combination of stage and state are differing revenues and out-

lays. These are tabulated below:

Net scrap value of the ship at age n in voyage

periods

Cost of laying up the ship at age n.

Cost of recommissioning an n-voyage period old ship.

For simplicity of exposition, we will assume that

it takes bN to put the ship in or take it out of

layup.  Other assumptions can be handled without

introducing any great computational problems.!

cost of maintaining a laid-up ship for a period hN.

B  n!

C  n!

CR n!

C  n!

CH  n!
C  n,m!

cost of holding a ship on berth for a period hN.

Present value of voyage costs associated with an

m-voyage charter.

All these costs should be actual cash flow expenses asso-

ciated with the maintenance and operation of the ship. They

should not include any costs which do not depend on the employ-

ment decisions. In particular, they should not include any

capital charges. Notice that all the above costs may depend on

the age of the ship so that rising maintenance or fuel costs or

periodic survey costs can be included on the model as well as

changes in price levels through time  inflation! as desired.

W  X Rl GRl L ! = maximum expected present va l ued prof it
achievable from the ship for the remainder
of its life given that the ship is pres-
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Let t, be the point in time corresponding to a ship age of
n

n round-trip voyage periods. At any such decision point, the

state of things has been characterized by the present status of

the ship, X, and the present state of the market.  Rl,ARl,L!.
For every possible combination of age n, and state of the sys-

tem  XpR] LRl L! we define the following optimal value function:



ently n round-trip voyage periods old and
the state of the system is  X,Rl,hR1,L!.*

Our job is to develop a recursion relationship for W . This

relationship takes on a differing form depending on the value
of X.

If the ship has already been scrapped at t , X=-2!, thenn'

there is no profit achievable from this ship in the future.
Herr ce.,

W  -2,Rl'KRl,L!=0 �. 1!

If the ship is presently laid up at t , X=-l!, then we have

three options: scrap it, leave it in layup, and recommission.

owner has, from his long experience with the market, developed

subjective probabilities on the likelihood of the various pos-
sible values of the spot charter rate at, t 1 given the state

n+1

*Let R. and C. be the cash inflow and cash outflow in period i.
The present &alue at period n,PV n!, of a time stream of such
flows between period n and period m further in the future is

m-n

+k +k
k=o

n+k n+k

-l
�+i! , i being the DM's opportunity cost of capital--
associated with tying up a, unit of capital for a
From this definition, we have the following recursion
will make frequent use of.

where p=
the loss

period.
which we

m-n
kPV n! =  R � C ! +

n n

 R -C ! + pPV n+1!
n n

The argument for using present value to account for the time
value of money can be found in any text on capital budgeting.

If we scrap the ship, we will receive B n! and the decision se-

<uence will end. If we leave the ship in layup, then in the

Qlterval  t ,t l!, we will experience an outlay of C< n! and at
n+l

the next decision point, t 1, we will find ourselves in staten+1'

 -1, Rl  n+1!, AR1  n+1!,L  n+1! ! where Rl  n+1!, and LR1  n+1!, the
value of the spot rate one period hence and its rate of change

are not known with certainty at t . In order to take expecta-
n

tions over these random variables, we require that our Bayesian



of the market at t . Precisely, we required the owner's
n

Pr  R n+1! ~ R n!,AR n!,L n! ! for all possible values of the four

arguments. In Chapter 6 we shall outline how a Bayesian would

use past market history to obtain these probabilities' Given

these probabilities, the expectation of the maximum present.

valued profit obtainable from the ship  tarn t 1 o~, given that
n+1

we leave the ship in layup at t is
n

Pr  Rl  n+1! ! Rl  n!,AR1  n!,L  n! ! W 1  -1, Rl  n+1,R1  n+1! -Rl  n!,L  n+1! !
R n+1!

where L  n+1! =L  n!+AL �  Rl  n!, AR1  n!,L  n! ! ! where AL is the change
in time to launch associated with new orders amounting to

0 R ,AR L!. A more concise way of writing the above summation

3 s

E[W 1 -1,R1 n+l!,AR  n+l!,L n+1! !   Rl n!,AR1 n!,L n! ]

Summing up, the maximum expected present valued profit fh.am t
n

on, given the state of the system at t is  -1,R1 AR1 L! and the
n

ship is left in layup is

-C  n!+pE [W 1 -l,R1 n+l!,AR1 n+l!,L n+1! ! ~ Rl n! AR1 n!,L n! ]

where p is the discount factor relevant to the interval AN and

shipowner's opportunity cost of capital. If, on the other hand,

the owner decides to recommission his ship at t given  -1,RlAR1 L!
n

then in the interval  t , t 1! the owner will experience the
n' n+1

costs of bringing the ship out of layup, CR n!, and at t +1 hen+1

will find himself in state  O,R1 n+1!, AR1 n+l!,L n+1! !, i.e.,
the ship will be in commission and available for charter. Thus,

the maximum expected present valued profit associated with the

option of recommissioning the ship at t , given that the presentn'

state is  -l,R1 ARl L! is

-CR n!+pE [W 1 �, Rl  n+1!,AR1 n+1!,L n+1! ! ! Rl  n!, AR1  n!,L n! ]

Putting this all together with the realization that if the ship

is laid up at t , the ENVing owner will choose that alternativen'

which maximizes future expected present valued profits and, if
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he does so, the resulting expected profit from t on will be
n

W  -l,R1 Rl,L! we have
n

B  n!

-C  n!+pE [W l -1,Rl n+l!,ARl  n+1! L n+1! ! ~ R1AR1,L

-C  n!+pE [W 1 O,R n+l!,AR1 n+1! L n+1! ! ~ Rl,AR1L]

 -l,R ,A , !=
n

�.2!

If the ship is currently operational and available for

charter, that is, if X=O, then the owner has M+3 options: scrap,

layup, hold on berth, or charter for m-voyage periods, 1<m<M.

If he scraps the ship he will receive B n! and the decision se-

quence ends. If he lays the ship up, he will bear the cost of

layup and, at the next stage, X will equal -l. Hence, the maxi-

mum expected present valued profit associated with layup is

CL n + ~ [ +1 -1, Rl  n+1!, ARl  n+1, L  n+1!

-CH  n! +pE [W +1 �, Rl  n+1!, AR1   +l!,L  n ! ! I Rl, AR1,L]

If he accepts an m-voyage charter, then he assures himself of

a revenue stream whose present value  discounted back to t ! is
n

m-l

R =   p R  Rl,ARl,L!
m k 0 m

and at the same time commits himself to an operating cost stream

whose present value is

m

C =   p C  n!
m k 0 v

Hence, if we, somewhat like an accountant, count costs and reve-

nues at the time we become irrevocably committed to the corre-

sponding outlays and incomes, then the maximum expected present

If he refuses to accept any of the prevailing rates and holds the

ship on berth, then he will bear the costs of holding the ship

on berth for a period AN and, at t. 1, X will equal 0. Hence,
the value associated with this option is:



valued profit associated with accepting an m-voyage charter at

t , given that the current state is  O,Rl,hRI,L! isn'

-C +pE [W « m-l,R1 n+1!,LR1 n+l!,L n+1! ! ~ Rl,ARI,L]

where the m-1 indicates that at stage n+1 we will have m-1

voyage still to go on the current charter contract.

Putting this all together we have the expression for the

maximum expected present valued profit from t on given

 O,R1,5R L!:

 n!

-C  n!+pE [W 1 -1,R1 n+1!,hR1 n+1!,L n+1! ! ~ Ri,AR1,L]

CH n +pE [W +1  O,R1  n+1! AR1  n+1! L  n+1

R -C +E [W +1  m-l,Rl  n+1!,AR1  n+l!,L n+1! ! ~ Rl,hR1,L]

W � Rl 6.R1 L! =max

m=1,2,...,M �.3!

Notice that in this situation the owner will accept a spot char-

ter  m=1! rather than hold on berth if and only if R -C <C
1 v H

since both of these alternatives result in the same expected

profits from t 1 on. That is, for these two alternatives con-
n+1

sidered in isolation conventional marginal cost reasoning still

holds. This is, in part, because our problem formulation does

not give the "hold at, berth" alternative full credit for its

flexibility, since we have allowed the DN to review the situa-

tion only at the points  ...,t ,t 1,.. ~ ! ~ The shorter we maken' n+1'

the review period the less serious this restriction becomes.

we have

W  X,R1,6RI,L! =pE [W 1 X-l,R1  n+1!,ARl  n+1!,L  n+1! ! ~ Rl,d Rl,L]

�.4!124

Finally we have to consider the case of X>l at t . If X

is greater than zero, since we have ruled out forward chartering,

the owner has no immediate options at t . The owner can only
n

sit back, collect his term charter payment  for which we have

already given him credit! and pay his voyage expenses  which

also have already been accounted for!. Hence, for 1<X<N-1,



It should now be clear why we credited the owner for the entire

present value of his term charter net revenue stream when he

made the decision to accept the charter for when we compute W
n

backwards we will have no way of knowing what the term charter

rate was when the ship was originally chartered.

The above set of recursion relations, Equations 4.l, 4.2,

4.3 and 4.4 hold for all n between 0 and N-l inclusive. At

ship age N, by assumption, the only option is to scrap the ship

if it has not already been scrapped. Hence,

W   2 fRl /ARl /L! 0

WN  ~ Rl ~Rl �. 5!

Equation 4.5 is the boundary condition. The computation pro-

ceeds in a straightforward dynamic programming manner, substi-

tuting the boundary condition into the r.h.s. of 4.l through

4.4 and substituting the resulting left-hand side recursively

into the right-hand side. If we describe the market by ten

spot charter rates, ten possible rates of change, 20 different

launch times, and N=2 months  Persian Gulf-Northern Europe! and

M=l8 � years! the size of the state space is about 40,000--

large but not out of the question, given the large amounts at

stake.

4.5 SHIP INVESTMENT

An important application of this algorithm might be in de-

termining the desirability of investing in a ship for use in the

charter market. This would be done in the following manner.

order a ship is t=-L ~ hN. Calculate W0  , Rl �!, hRl �!,L �! !
0

for all possible combinations of  Rl�!,ARI,L! by Equation 4.4.
The dot in place of the ship status variable indicates that this

variable is not relevant to the construction period.

Let us suppose, if we order a ship now, it will be launched

L round-trip voyage periods from now. Let this launch time be
0

n=0.  That is, now, the time of our decision whether or not to



W L   ~,Rl -L !, ARi -L !,L -L !,L -L ! is the expected operating
proPit obtained from the ship if launched at n=0 present valued
back to n=-L  now! given that the state of the market at n=-L

0 0

is  Rl -L !,ARl -L !,L -L ! ! . Next calculate the present valueo ' l o ' o

of the stream of fixed outlays associated with the decision to

purchase the ship CF. This cost stream will include the capital
cost of the ship, adjusted by financing arrangements, fixed
operating and salary costs--any ship-related costs left out of

the operating costs defined earlier. Taxes should be treated

just like any other outlays.  No share of company overhead
costs which would be incurred whether or not the ship is built
should be included. All those overhead costs which will be

incurred if the ship is built but not incurred if not should be

included.! If C <W   ~ ,R> -L !,BRl -L !,L -L !! then the
ENV'er should order the ship. Otherwise he should not. Notice,
without recalculating the basic optimal value function table,
we have the optimal ship ordering policy for a large number of
combinations of stages and states. In short, in solving the
optimal employment problem one solves the optimal vessel purchase
policy problem. We have, of course, assumed that market rate

behavior is independent of the shipowner's ordering decisiion.
For a large owner, this might not be true.

Notice also that for an EMV'er the fixed cost associated

with purchasing and owning the ship does not affect the optimal
operating policy. Once the ship is built these costs are in-

variant, or, in the vernacular, sunk. The cost of construction

certainly influences whether or not a ship should be built.

However, once. 4h.e, s4p ia builds, the owner must do the best he

can from where he is and not allow artificial accounting con-
cepts such as depreciation or "fully allocated" costs to in-

fluence his operating decisions'

4.6 A DEMAND EXOGENOUS-SUPPLY ENDOGENOUS MODEI

The preceding approach to the vessel employment problem was

based directly on the prevailing spot rate ~ Now the charter

rates, and the spot rate in particular, are not the driving
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forces in these markets. Rather they are determined by the

underlying demand for and supply of the type of shipping ser-

vices which the owner has to offer.

Any experienced owner has qui<e a -bit of knowledge

concerning these underlying supply and demand variables. The

preceding model does not allow the owner to incorporate this

knowledge into his calculations except. indirectly. Therefore,

let us see if we cannot develop a ship employment algorithm

based directly on the demand and supply variables relevant to

a vessel charter market. As we shall see, such an algorithm

has both advantages and disadvantages with respect to the rate-

based model. This exercise will also serve to demonstrate

that, when one is confronted with a real-world problem, there

is generally a large number of ways of tackling it. The art

of analysis involves choosing that computationally-feasible

approach which is most appropriate to the problem and Xbe. VM at

hand. Consider the following three market state variables:

l! A variable specifying the present short-run demand

function for the kind of shipping services  tanker,

dry bulk, general cargo! which the owner's ship

provides, D.

2! A variable relating to the present short-run supply

function of this type of ships, S.

3! A variable specifying the amount of this type of ship

which is pr'esently on order or under construction in

the yards of the world, L.

These are the three most important structural variables

underlying both the behavior of the market rates and the indus-

try's decision to expand supply. We will take each in turn.

In most vessel charter markets and particularly in the

important tanker market, the short-run demand for shipping ser-

vices is quite inelastic, that is, the ton-miles of ship services

demanded in a certain period, say, dN, is largely insensitive

to=the-current-charter-rates.;;Large=-scale=shippers, .such as
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oil companies and ore processors, are rather tightly committed

to obtaining a smooth flow of shipments, which flow it, pays them

to maintain even if the charter rates change rather drastically.

This fixity in turn is derived from the short-run inelasticity

of the final markets for such basic products as oil, steel,

aluminum, grain, etc. The situation is roughly that shown in

Figure 4.l where the quantity of transportation demanded, q

through period AN, depends only very weakly on the current value

of the charter rate, r. In such a case we can usefully speak

of a Ze.ver of demand, D. D is the ton-miles demanded by ship-

pers in the current review period. Notice that, while the D

indr:. xi=.~;==irr anv given pdriuc, ~ - .p>g;-a -; Prac51:ca ., purposes !Ã;

!!!!!!!!!!!!!!!!!!!!!!!m4ependent "of" rthe curi ant -i ate-;.-=this � does � not mean -<Eat- bef o'r'c''-'-'-'-'--'""

the fact we know what D is. Quite the contrary, the level of

demand in ton-miles which will exist in future periods is the

single biggest uncertainty in this problem."

While the amount of transport service demanded is quite

insensitive to the existing rate, the amount of such service

which the industry will be willing to supply q  r! will, over
s

certain ranges of r, be critically sensitive to the rate. ln

shipping markets, the behavior of transportation supply offered

will look like that shown in Figure 4.2 ~ If the market rate

is below some rninirnurn value, r, no shipowner will find it to

his advantage to accept the rate for the a.dd~i.r'acta' costs asso-

ciated with the voyage will be greater than the revenues he

earns from the voyage. As the rates rise, a point will be

reached where the most efficient vessels will make more money

if they accept the rate than if they do not. Lf the rates con-

tinue to rise, more and more vessels will find it to their ad-

vantage to accept charters and rather quickly most of the fleet

will become employed. This is represented by the steeply-rising

*Notice that we are speaking of demand for shipping, demand
in ton-miles. The demand. for oil in tons can be reasonably
well predicted over at least the medium term. However, the
demand for tankship services depends on where this oil comes
from and by what route, which depends on such scarcely predic-
table factors as location of new finds, V.S. quota policies,
the Arab-Israeli conflicts, etc.
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portion of the curve in Figure 4.2. After most of the fleet is

employed, only very old or very inefficient ships or ships de-

signed for some other trade will be called into activity by fur-

ther rises in the rates and the supply curve begins to level

off. After these latter ships are operating, the only way sup-

ply can be increased further is by operating above design

speeds, by working overtime shifts in ports, etc. These are

very expensive measures which have only a slight effect on

transportation supply. At this point the supply curve becomes

quite insensitive to further increases in the rate. Empirical

investigations by Zannetos, reference 22, indicate that the tan-

ker supply curve can be approximated by

q = S' 96.75-2.5.5/r !
2

where S is the total amount of design capacity of the fleet and

r is the spot rate in cents per 1,000 ton-miles. Devanney and

Lassiter, reference 3, have estimated the short-run supply func-

tion by computing additional voyage costs for the present �970!

tanker fleet. Both these approximations are shown in Figure 4.2.

Clearly, whatever form of the supply curve is chosen, the

key variable is the total transport capacity currently afloat,

S. In short, we are suggesting that, if one knows the current

value of S, one has to a large degree ascertained the current

short-run supply function. But if one knows both the current

level of demand, D, and the current design capacity of the

fleet, S, that is, if one knows the current short-run demand

and supply functions, then one can predict the current spot

rate for the market rate will be that rate at which the supply

offered equals the transport services demanded, the rate R

at which

qd R,D! = q  Rl,S!

or solving for the spot rate

Rl = H  D,S!

where the function H will depend on the form of the supply and
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demand functions assumed. Thus, if one knows D and S one can

obtain at least an estimate of Rl.*

The variable L has already been discussed in relationship

to the rate-based algorithm.

But if one has Rl and L and o~e ih e~Ding Zo diacegand
the. e.$$ee4 o$ Xhe. <afe. 0$ change, o$ lee. span cate, then by ear-

lier arguments one can develop estimates of the current. term

rates [R :m=2,...M! and of the transport capability ordered in

the present voyage period 0 Rl,L!. If this is the case, we are
in a position to develop an algorithm based on the four state

variables  X,D,S,L! which develops the vessel employment strat-

egy consistent with these assumptions and maximum expected pres-

ent. valued profit,.

In fact, by reasoning exactly similar to that used earlier

W  2 ~DIS~L! 0

B  n!

W -l,D,S,L!=max -C  n!+pE [W l -1,D n+1!,S n+1!,L n+1! ! ~ D,S,L! j
-C  n!+pE[W 1 O,D n+l!,S n+l!,L n+1! ! ID n!,S n!,L n!

where

E [W 1 X,D n+1!,S n+l!,L n+1! ! ~ D n!,S  n!,L n! ]= Pr  D n+1! ~ D n! ! ~
W 1  X, D  n+1!, S  n+1! L  n+1!

«We are tacitly assuming that the relevant market is at least
approximately competitive. Both major analyses of the tanker
market, references 9 and 22, conclude that, with the exception
of the short-lived tanker pool of the thirties, the tanker
market represents one of the purer forms of competition found
in real-world markets. The dry bulk market is institutionally
quite similar. Operators in certain dry bulk markets feel that
Japanese charterers cooperate in attempts to control rates.
However, their recent withdrawal from the market at high rates
can also be explained as speculation against inventory that the
rates will drop, which speculation is perfectly consistent with
a purely competitive market. However, in such cases, demand
can no longer be assumed to be completely inelastic. The algo-
rithm does not need this latter assumption except by way of
convenience.
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and S  n+1! =S  n!+AS  L n! !+VS  S  n!,Rl! where AS is the amount of
launchings in AN consistent with the present order book and

VS is the amount of scrappings and losses consistent with the

present fleet size and charter rate. L n+1! =L n!+AL L n!,

0 Rl,L n! ! as before.

Notice that this formulation requires that the DM specify
a distribution only over the future demand series and not over

the rates. In general, future demand is a random variable

about which the DM will have much more to go on. In effect, we

have transferred the responsibility for simulating the market

from the DM's internal processes to the algorithm leaving the

DM only the extremejy important function of cogitating about

the future growth in demand for his services.

Continuing with the recursion relations, we have

B  n!

-C  n!+pE [W 1  -l,D  n+l!,S  n+1!,L n+1! ! ~ D n!,S  n!,L n! ]

-CH n!+pE[W l O,D n+1!,S n+1!,L n+1! ! ~ D n!,S n!,L n! ]

R -C +p E [W +1  m-l, D  n+1!, S  n+l!,L  n+1! ! ~ D  n!, S  n!,L  n! ]

W  O,D,S,L! =max

and. finally for the case where the ship is already on charter

W  k,D,S,L! =pE [  W 1 k-l,D n+1!,S  n+l!,L  n+1! ! ~ D n!,S  n!,L  n! ]
which holds for all k greater than 0 and less than M.

This algorithm has been prograrnrned at M.I.T. and the re-

sults indicate that, for a moderately sized state space  AN=2,

M=25, ten D's, ten S's, ten L's!, the cost of running the algo-

rithm over a 25-year vessel life will be approximately $250.

This program is described in reference 21.

4.7 OVERALL FLEET POLICIES

As long as the owner is an EMV'er in a perfect capital mar-

ket, as we have assumed, each of his ships can be treated as a

separate entity, since by maximizing the expected net present

value of each ship separately he will maximize the expected net
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present value from the fleet as a whole.* In such a situation,

the industry dictum, "The vessel is the firm." holds. Thus, for

the case of perfect liquidity and EMVing, we have already

"solved" the multi-ship fleet owner's problem.

However, the limitations on this "solution" are indi.cated

by the fact that, under these assumptions, the owner will em-

ploy all units of his charterable fleet in exactly the same man-

ner. Cursory examination of the foregoing algorithms will re-

veal that if the owner decides to spot charter one of his char-

terable units he will spot charter all charterable units with

the same general cost characteristics; likewise for long-term

chartering. In actual fact, almost all independent owners

choose to employ their fleet in a mixed manner--placing a. por-

tion in long-term charters, a portion in medium-term, and a

portion in the voyage market. It is clear that either owners

are risk-adverse or dealing in imperfect capital markets or

both. If the evidence presented in Chapter 2 concerning Scan-

dinavian owners' preference function is general, this mixing is

more a product of capital market constraints than risk-aversion,

for long-term charters can be mortgaged while short-term con-

tracts cannot.

If we generalize the earlier solutions to incorporate

either realistic financial markets or nonlinear preferences,

the problem becomes computationally infeasible quite quickly.

In both cases, the basic problem involves the fact that we can

no longer consider each ship separately. The problem of the

risk � adverse owner in a perfect capital market is quite simi-

lar to the problem faced by the combined charterer-owner such

as the large oil company and this problem will be treated in

the next section under that guise. For now, we will say what

little we can about the ZMV'er in an imperfect financial market.

*This statement ance again assumes that the owner is facing
a competitive market, that is, the manner in which he employs
his ships does not affect the charter rates.
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Given a description of such a market, it is no great trick

to write down a dynamic program for solving this problem. Let

us suppose, for example, as is sometimes the case, that an in-

vestor is limited in his borrowing by this current ratio. That

is, financial institutions will lend him some multiple of his

liquid or near-liquid assets but no more. Let D,S, and L be

the market state variables as before. Let the vector  Xl X2,
X 3 ~ ~, XK ! be the ship status var i ab 1 e s for each of the pre sent
and potential ships in his fleet defined m 4eXore except. tbat

-3<X.<J implies the ith ship is presently on order and will be

delivered ~K~-2 voyage periods from now. X.=-2 means the
1

ith ship is neither in the fleet, nor on order. K is the maxi-

mum fleet size the owner wants to consider. Let C be the

owner's liquid assets as defined by his bankers  but assumed

independent of present market rates! and let F be his outstand-

ing debt. Then, at any stage, the state of this owner is de-

scribed by  D,S,L,K1,X2,...,XK,C,F! and W  D,S,L,X1,X2,...
n

X ,C,F! is the corresponding expected present valued. profits

associated with this state. The owner's problem at any combina-

tion of stage and state is to maximize, over all possible vessel

employment and fleet investment alternatives meeting the C/F

limits, the difference between the present value of the revenues

fixed by decisions made at this stage and the present value of

the outlays fixed by decisions at this stage plus the discounted

expected value of the W 1 associated with the state which these
n+1

decisions and Nature results in at the next stage. By now, it
should be clear to the reader that writing down a recursion re-

lation consistent with this statement presents no conceptual
problems. It should be equally clear that such a dynamic pro-

gram is computationally unthinkable for even a very small fleet

size since the size of the state space grows exponentially with

the number of ships in the fleet.

This impasse does not imply that such an owner can do no

useful analysis but. rather he can analyze only a small market

of all fleet investment/vessel employment policies. An example
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of such limited analysis is given in the next section.

4. 8 THE OWNER-CHARTERER' S PROBLEM

The obverse of the EMV-imperfect financial market problem

is the non-EMV-perfect capital market problem. The latter prob-

lem is approximately the situation faced by the large-scale

shipper-owner such as the international oil companies which

dominate the buyer side of the tanker market. Generally, these

organizations have practically unlimited borrowing power. Thus,

by our earlier argument, their observed behavior of owning some-

thing like 40% of their transportation requirements, term char-

tering about 40% more and voyage chartering the rest can be ex-

plained only in terms of risk-adversion.

Generally speaking, the risk-adverse fleet operator's prob-

lem is no easier to solve than the EMVer-imperfect capital

market problem since once again the state space is astronomi-

cally large. In the case of the owner-charterer we need as

state variables the length of time each of the chartered and

owned ships presently under control will be under his control

as well as the state-of-the-market variables and the variable s!

upon which his preference function is based.* This is clearly

a computationally infeasible situation.

A modicum of progress can be made if we restrict our at-

tention to a very small set, of strategies: the fixed fleet mix

policies. A fixed fleet mix policy is a policy in which the

owner-charterer attempts to maintain fixed proportions of his

requirements in each of several categories. For simplicity,

let us assume three such categories: owned, five-year charters,

and single-voyage charters. Such a policy can be characterized

by only three variables: X ,X ,X where X is the percent of
0

transport which is obtained through five-year charters and

X is percent of transport which is obtained in the voyage
s

*In a perfect capital market, it is reasonable to assume that
corporate preference is based on present valued transporta-
tion costs.
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market. Fixed fleet mix policies are not a particularly bril-

liant subset of strategies. For one thing, they do not vary with

the current state of the market. However, such policies form

at least general guidelines for many real-world owner-charter-

ers and as long as you are going to follow such a policy you

might as well pick the best of such policies. Thus, this set,

of policies is of some interest.

Since the above-outlined three-category fixed fleet mix

policy has only two independent variables, it is a reasonably

simple matter to find that three-category fixed fleet mix policy
which maximizes expected preference by straightforward enumera-

tion. That is, we first might test, say, the policy  X =1.00,
0

X =O,X =0!, then the policy  X =.90,X =.lr!,X =0!, etc., sequen-

tially adjusting the fleet mix until we arrive at the policy
 X =O,X5=O,X =1.00!. In other words, if we can find a means of
obtaining the expected preference associated with the present

valued transportation costs which results from a particular

fleet mix policy, we can determine the best of these policies

by simply repeating the calculations for each of these policies.

One can obtain an estimate of the expected preference asso-

ciated with a particular fleet mix policy by straightforward

Monte Carlo simulation if one is willing to assume:

1! The owner-charterer will review his transportation

requirements on a periodic basis, say, by quarters.

Let n denote the nth such quarter.

2! The DM is willing to specify a cut-off date to the

problem: that is, he is willing to cost out his

policy for the next, say, twenty years and ignore

what happens afterwards. Let N be the cut-off date

in quarters.

3! The DN is willing to assume a dynamic model of the

charter market such as the supply-and-demand-based

model described earlier. For this application, how-

ever, there is no limitation on the number of state

variables or the number of values that any state
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variable can assume. Therefore, a very detailed

model of the market can be used. The DM must be

willing to specify distributions on any random

variables in this model.

4! The DM is willing to describe his in-house trans-

portation requirements  d :n=l,2,...N! in ton-milesn'

per quarter through the future. The d 's may either
n

be deterministic or random variables. In the latter

case he must be willing to specify distributions on

these random variables. The distribution on d may
n

depend in any manner whatsoever on past d 's and
n

the present and past values of the market variables.

Generally, if industrywide demand increases due to,

say, the Suez Canal closing, then in-house demand

will also increase.

Given all these assumptions, one can test a particular

fixed fleet mix policy by straightforward Monte Carlo sirnul,a-

tion. Suppose we wish to test the  X =.40,X>=.40,X =.20!
policy, then we would start our model of the market off, using

the present actual values of the state variables, generate the

values of the state variables at the next quarter, using the

model's relations and a random number generator to obtain sam-

ples of the random variables, and then repeat the process for

the following quarter and so on until n=N. Concurrent with this

simulation we would keep track of the in-house transportation

requirements and the status of the in-house transportation corn-

mitments and adjust these commitments as required to maintain

the percentages specified by the policy presently under consid-

eration. The simulation keeps track of the present valued costs

and revenues associated with the resulting purchase and sales.

The reSult at n=N iS a Sample Of the total preSent valued cOSts

associated with the policy for the period n=0 to n=N.

This simulation has to be repeated a number of times to

obtain a hipt nor~ tS~ wgsnr opted total c.est~..pf tpr nne
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has made enough runs so that one is satisfied that the resulting

histogram is a reasonable approximation of the distribution of

costs associated with the policy,* then one applies one' s

preference function of outcomes and takes the expectation. One

then repeats the whole process for another fixed fleet mix poli-

cy and so on.

*The problem of when to stop rerunning is a Bayesian decision
theory problem in its own right which we won't go into. In
general, a single run will be quite fast since one is merely
simulating a single specific trajectory of the process. Thus
a set of, say, 1,000 runs is computationally feasible, espe-
cially if one keeps track of more than one policy on a given
run.
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CHAPTER 5

MAINTENANCE AND REPLACEMENT--PROBLEMS IN WHICH THE

PROBABILITIES CHANGE

In this chapter we turn our attention to an interesting

set of decisions which arise in the maintenance and repair of

marine systems. The marine environment is harsh and changeable

and the costs of failure can be quite high due to the value of

the systems and their relative isolation. Thus, the balancing

of redundancy and conservative design, preventive maintenance

and replacement against possible failures is a critical issue

in many marine situations. Such problems involve two levels of

uncertainties.

a! Even if one knows how "good" or reliable a particular

system is, one cannot predict with certainty when it,

will fail or how often it will fail in a particular

period;

b! Often one doesn't know how reliable a system is, for

one has had experience with only a small sample of

the system in question.

Thus, a related problem is determining how "good" a system

is from a small set of failure data. We will begin our study

of such problems by examining a situation in which these two

sets of uncertainties are related in an extremely well-struc-

tured manner and then move to the more general problem of con-

structing maintenance and overhaul strategies for equipment

about which one has only a limited amount of failure data.

5.1 THE BOILER TUBE PULLING PROBLEM

The biggest single job in the overhaul of marine steam tur-

bine machinery is usually the inspection and repair of boiler

tubes. In general, not all and sometimes very few of the 1,200

or so tubes in a boiler need replacement. However, one cannot

determine for certain whether a tube needs replacement without

going through the laborious and expensive process of pulling it.

On the other hand, failure to replace a defective tube can lead
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to substantial loss of power, and expensive shutdowns, perhaps

at critical moments in the ship's career. Finally, the best in-

formation one has on the likelihood of the condition of the re-

maining tubes in the boiler is the condition of the tubes al-

ready pulled. The problem thus arises: how many tubes should

we pull and how should we change this decisio~ as the state of

the tubes already pulled becomes known to us?

In order to get started on this problem, consider the fol-

lowing idealized boiler. The boiler has N tubes. A tube is

either defective or not defective--there are no in-betweens.

More discriminating models are possible which distinguish be-

tween, say, a failed, tube, a badly corroded tube, a lightly cor-

roded tube, and a perfect tube at some expense in computational

feasibility. For now, we stick to the binary case.

Iet p be the probability that a tube is defective. If the

DN is willing to assume that all tubes face approximately the

same conditions, then it is reasonable for him to assume that

one tube is as likely to be defective as another--that is, all

tubes have the same p. Unfortunately, the yard will not know

exactly what these conditions were. Therefore, p cannot be

known with certainty. In fact, our job is to attempt to esti-

mate p from the conditions of the tubes already pulled.

Roughly. if a lot of the tubes are bad, then it is more likely

that p is close to 1.00 and thus more likely that the next

tube s! to be pulled are defective. Bayesian decision theory

will allow us to make these intuitive feelings operative in a
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its own p.

With this caveat, let C m! be the cost associated with pul-

ling and replacing m tubes in a block. This should be the addi-

tional cost, given that the boiler is open and under repair. In

general, C m! will not. be linear in m, reflecting economies due

to pulling tubes in a block. Let F k! be the expected cost of

not fixing k tubes which are defective. These costs should in-

clude the cost of downtime, of plugging, and of the resultant

loss in power. The estimation of these costs is a problem in

uncertainty in itself. For now, assume we have somehow ascer-

tained F k!.

In elementary probability courses, it is demonstrated that

if p is the probability of a defective tube on a single trial

then, if we pull m tubes in a block, the probability of k of

those tubes being defective is

m k l !m k

Well, since p is a probability, it must be between 0.0 and

1.0 inclusive. To get our thinking started, let's say before

pulling any tubes, the DM believes that one possible value of

«It may help our thinking to regard p as the probability with
which Nature picks a defective tube. However, we don't know
what Nature's probability is. In general, therefore, our prob-
ability that the next tube is defective will not equal p.
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This function is called the Bernoulli density function and. de-

noted f  k~p,m!. Unfortunately, we don't know what p is and
further, as the results of our earlier investigations of the

boiler become clear, presumably our ideas about p will change.

As Bayesians, if p is a variable about. which we are uncertain,

then by introspection we can obtain the subjective probability

that p takes on each of its possible values.* This set of prob-

abilities is called the subjective distribution of p. What can

be said about this distribution?



p between 0 and 1 is as likely as any other. That is, when the

DM is asked at what canonical chance T  he would be indifferent

between a lottery which yields him a valuable prize with canoni-

cal chance m and a lottery which yields him the same valuable

prize if p is less than x, the DM says m = x and he says this

for all possible x between 0 and l. That is, the DM answers to

this set of questions lie along the straight line in Figure 5.1.

This straight line is called the DM ' s a ubj eclat v e. dna Crt' bL Zi on

on the random variable p. The derivative of this function is

shown in Figure 5.2. The derivative of a distribution function

is called a dezai4y  un.chion. In this case, the density func-

tion is simply a straight line of value 1.00 between 0 and 1.

This particular density function has been unimaginatively tagged

the uniform density function. In general, a density function

is as good a measure of the probability of the various values

of a random variable as a distribution function. The advantages

of working with density functions will become clear as we

proceed.

An. analytic representation of the uniform density function

can be obtained by using the Beta density function f< pIr',n'!
where the parameters r' and n' equal 1 and 2 respectively' In

general, the family of Beta densities is given by

p<l

r,n>0

where B r',n'!, the complete Beta integral is given by

c r'-1 n'-r'-1  r'-1!! n'-r'-l!l*B r',n'! = f x �-x! dx�
0

The Beta density functions are positive only between 0 and 1 and

by varying the parameters r' and n' a quite rich family of

*Throughout this book the factorial notation is taken in its
generalized sense, i.e.,  x-1!! = !' x! and thus is defined
for all x greater than 0.
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distributions can be obtained. Almost any smooth unimodal and

some bimodal density functions on the interval �,1] can be

closely approximated by a Beta density. Some members of this
family are shown in Figure S-3. Notice that substituting r'=1
and n'=2 yields the uniform density.

Given this ability to approximate a wide range of possible

distributions on our unknown likelihood of a defective tube, p,

the DN will lose little generality if he decides to limit him-

self to Beta densities in choosing a subjective distribution on

p. This essentially harmless limitation has some very signifi-

cant analytical advantages.

First, given that one approximates one's subjective distri-

bution on p by a member of the Beta family f~ p~r',n'! one can
obtain a closed form expression for the probability that one

will obtain k defective tubes if one starts the process by pul-

ling m tubes in a block. For, by the Sum Rule, the probabi-

lity of k bad tubes out of m given Beta density on p with para-

meters r' and n' is equal to the sum over all p of the product

of the probability of k conditional on p and the probability of

p. Or

1

pr k~ r',n',m! = I f  klp.m! f< plr',n'!dp
0

This is simply a straightforward application of the Sum Rule,

the only difference being that since p can take on a continuum

of values we have to use integration rather than summation.

Substituting into the above expression, we have

m! k 1 m-k .1 r'-1 1 n'-r' � 1
j k~m-k! ' P ' P! BTrrn' 'P   P' P
0

m!  n'-1!! r '+k-1  n '+m! �  r '+k! -1
m- ! r � ! n -r � !

�- !p d p

m!  n ' -1! !  r '+k-1! !  n '+m-r ' -k-1! !
k! m-k !  r'-1!!  n'-r'-1!!  n +m- !

B r'+k,n'+m!
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FIGURE 5.3 A FEW BETA DENSITY FUNCTIONS
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This density function is called the Betabinomial and is

denoted by

f>B k~r',n',m!.

f pIr,n'r',n'! f Pr r~p,n'r',n'! ~ Pr p!n;r',n'!dp
0

where integration replaces summation since p is continuous. Now,

2"" 2 " R

3.s

 �'! p' l-X ! n

regardless of r' and n'. Similarly, the number of trials n b~

p. Hence,itself cannot tell us anything about

Pr p~n'r',n'! = Pr p r',n'! = f> p~r',n'!
Thus,

r
r n-r l r I ] n'-r'-lIn! p �-p!  -n-nT ~ p �-p!

f pIr,n;r',n'! B r n

lr r'-l n'-r'-1
{�!p  l-p! S~ P  l p! dp

0

r+r'-l
 l-p!

 n+n'! - r+r'! -1

l

p   l-p!
r+r'-l n+n'! �  r+r '! -l

dp

14<

The second and more important reason for choosing to approxi-

mate the subjective distribution on p by a Beta involves the

updating of this distribution as a result of having observed,

say, r defective tubes in the first n pulled. After having ob-

tained this result, the Bayesian DM's new feelings about p will

be given by the conditional probability on p given r defective

out of n and his oiiciinal distribution on p which is character-

ized by the parameters r' and n'. Let us denote this conditional

probability by f p r;n,r'n'!. By Bayes Rule,



r+r'-1
�- !

 n+n'! �  r+r' ! -1

B r+r ,n+n

f~ p~r+r',n+n'!

Thus., if we choose to approximate our subjective distribution

On p by a Beta where p iS the parameter Of BernOulli prOCeSS,

then our distribution. on p a.$Xet having observed a sample of

r defectives in n trials is also a Beta. Further, the para-

meters of the Beta we start with, which we will call the phioh.,

and the Beta we end up with, which we will call the poa4erziac,

are related in an extremely simple manner. In fact., if we denote

the new parameters by r" and n" then r" = r+r' and n"=n+n'.

Thus, by a clever choice of the form of our prior we don't even

have to do the Bayes Rule computations after having observed a

sample, but rather can write down the new distribution on p

immediatly. A prior which has this property is called a. canju-

gaXe. peio<. What we have shown is that, the Beta density func-

tion is the conjugate prior to the Bernoulli density. To illus-

trate how this works, suppose the DM had started off with the

wishy-washy uniform prior described above, that is, r'=1 and

n'=2, and suppose he chose to pull 20 tubes and observed that

5 of them were defective. His new feelings about p then are

described by the Beta with parameters r"=5+1 and n"=20+2. This

new density function is shown alongside his original function

in Figure 5-4. As might be expected, the DM now more heavily

weights p's near 1/4 and also his new distribution is consider-

ably tighter than the old, reflecting his increase in knowledge

about p. In fact, the DM now has some very definite feelings

about p. He is almost dead sure that p is less than 0.5, and if

you asked him at what 7r he would be indifferent between a lot-

tery awarding him a valuable prize with canonical chance m and

a lottery awarding him the same prize if p is between 0.1 and

0.4, he would answer, "I prefer the lottery based on p for any

vr's less than 0.9." Quite a change from the m=0.3 he started

out with.

Let us suppose, after having observed 5 defective out of
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20, the DM decides to pull 8 more tubes and observes 3 of them

to be defective. What is his new distribution on p? Well,

clearly the distribution he should start out with is his "old"

posterior, f8 p�,22! which becomes his new prior, since it
represents his state of knowledge prior to the most. recent re-

sults. His new posterior, his distribution of p after the second

set of pullings, is by the above expressions a Beta with para-

meters 3+6 and 8+22. 7n abaca, 4hz pos4ecio< d~a4ci bullion foe

one. act o  cesulis becomes Xhe. pe~ox  ore Xhe next,

It should be also clear that as long as the parameters of

the original prior are small  i.e., the original subjective dis-

tribution is wishy-washy! it will not be long before r"=r and

n"=n. That is, the data will overwhelm the DN's original

feelings.* A choice of original parameters r' and n' is equi-

valent to saying: my prior feelings before commencing any tests

are the same as if I had observed r' defective in n' tests and

nothing else. Thus, it. doesn't make much difference what origi-

nal distribution we start off with as long as it is wishy-washy.

In fact, if one wanted to give prior feelings no weight at all,

one could make r ' = 0 and n ' =0 .

Finally, by a straightforward generalization of the earlier

argument leading to the Betabinomial, the probability of obser-

ving k defective tubes out of a batch of m pulled after DM has

already pulled n tubes and r of these were defective is simply

the Betabinomial whose parameters are the parameters of the

present distribution on p, and m: f<B k~r+r',n+n',m!!.
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5.2 AN ALGORITHM FOR DETERNINING THE OPTIMAL TUBE PULLING
POLICY, GIVEN THE FOREGOING PROBABILISTIC CONSIDERATIONS

We have developed all the probabilistic considerations rele-

vant to this problem. We now proceed to the development of a

dynamic program for determining minimal expected cost tube pul-
ling strategies--strategies which, since they realize the prob-
abilities can and will change as we move through the process,

properly weight the value of experimentation.

At any point in the tube pulling process, the current situ-

ation can be described by the pair  n,r! where n is the number

of tubes already pulled and r is the number of these tubes which

have turned out to be defective' n is the stage variable and

r is the state variable for this process. We define an optimal

value function W  r! over all possible combinations of n and r
n

to be the minimum attainable expected cost associated with any

further tube pulling and any defective tubes left unrepaired,

given that we have already pulled n tubes r of which were defec-

tive. As usual, we proceed to develop a recursive relationship
on W  r! .

n

At any point  n,r! in the process, we have the following
alternatives:

1! We can stop pulling tubes, close up the boiler, and

bear the expected costs associated with any defective

tubes we have failed to repairs

2! We can pull m tubes 0<m<N-n and pay the cost, C m!,

associated with this job and then see where we are.

Let us develop the minimum expected costs associated with

each of these alternatives. Assuming there are N tubes in the

boiler and we have already pulled n of these and have observed

r defective, by the foregoing arguments the probability that k

of the remaining N-n tubes are bad is f>> k~r+r',n+n',N-n!.
Thus, the expected future costs of not pulling any more tubes

after having observed r defective out of n is:

N-n

f B  k I r+r ',n+n ',N-n! F  k!
k=o
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where F k! is the expected cost associated with k non-repaired
defective tubes.

If after having observed r bad tubes out of n pulled we
decide to keep pulling, the situation is a little more compli-
cated. Suppose we decide to pull m tubes and see where we are.

Well, we will certainly bear the costs of pulling and replacing
m tubes,  m!. Out of the m tubes pulled, k will be defective

where k is a random variable between 0 and m inclusive. We al-

ready know what the density function on k is. It is f  k~r+r',
n+n',m!. After we have pulled m tubes and k of them turned out

to be defective, we will be faced with the original choice, only
now we will have pulled n+m tubes and will have observed r+k

defective. But the minimum cost attainable from this latter

situation forward is by definition W  r+k!. In short, the
n+m

minimum expected n+m cost associated with the alternative of
pulling m>0 tubes after having pulled n and observed r defec-
tive is

C  m! + $ f ~>  k I r+r ',n+n ',m! ~ W  k!
k=0 n+n

But after having pulled n tubes and observed r failures, we
will want to follow the expected cost-minimizing alternative.
Moreover, the value of that alternative will be W  r! or

n
M-n

f  krr+r',n+n',N-n! -F  

W  r! = minimum
n

0<m<N-n

C m} +   f ~> k ~ r+r',n+n',m! -W +  k!
k=o n+m

Thus, this formulation leads to a computational simple dy-
namic program.* However, there are two things to note about this
program, one unimportant and one important. The unimportant
feature of this program is that, unlike the earlier dynamic
programs, the value of the stage variable at the next decision

*A computer program for implementing this algorithm is available
from the M.I.T. Department of Ocean Engineering.
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is a function of the present decision. Thus, this algorithm in-
volves a slight but obvious generalization of our concept of
stage. The reader should review the basic recursive reasoning
of dynamic programming and note that it does not require that
all decisions at any particular stage lead to the same stage.

The important thing to note about this program is that,
unlike any of the earlier ones, it is truly adaptive in that it
accounts for the fact that not only will our earlier decisions

place us in some state from which we want to do the best we can;
but also that, as a result of our earlier decisions and the re-

suits, we will have learned something about the probabilities
underlying our problem. Further, in calculating the optimal
value table it will weight the chances of future learning and
the value to be obtained from this learning in deciding what to

do. In short, this dynamic program properly weights the value

of experimentation in the same manner that we weighted the value

of experimentation in Joe's problem.

5.3 USING SMALL SAMPLE FAILURE DATA IN DETERMINING MAINTENANCE
AND REPLACEMENT POLICIES

We now wish to turn to a more general set of problems in-

volving preventive maintenance. As noted earlier, these prob-
lems involve two sets of uncertainties:

a! Even if one knows how reliable a system is--that is,

if one is absolutely sure of the probabilities of

failure--the timing and number of failures which will

actually occur cannot be known by the DM before the

f act;

b! Generally, the DN is not only not sure of the rele-

vant probabilities of failures, but often he has only

the sketchiest data upon which to base his feelings

about these probabilities.

Classical reliability theory has tended. to ignore the second
set of uncertainties. For example, in many situations one can

assume that the probability of failure of a component in the
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next time increment does not depend on how long the component
has been operating Properly stated, this assumption implies
that the probability of r such failures in a time interval T
is given by

-AT A r
Pr  r ~ T, A.!

rL

which function is known as the Poisson density function and
denoted f  rIT,A!.* Under this assumption, the parameter A,

P

known as the mean $aaZuae. cate. of the component, becomes the
sole descriptor of a system's reliability characteristics. Yet,
classical reliability offers almost no advice about how to deter-
mine X. The engineer is forced to skirt the problem by such
ad hoc procedures as assuming that the average failure rate
observed in his usually small sample is the mean failure rate
of the component in question. This leads to such absurdities as
a zero mean failure rate for those subsystems for which he has
yet to observe a failure, and a general feeling of discomfort
in applying the whole reliability theory apparatus. Using such
assumptions, one ends up with the same probability of failure
in, say, a year's operation whether one observes one failure in
two years of operation or twenty failures in forty years of
operation. The maintenance man understandably feels that the
size of his sample should be reflected in the probabilities
he generates.

The Bayesian views such physical parameters as a mean

failure rate on which we have limited data as a quantity we can-
not be sure about, in other words, as a random variable. He
uses whatever data exists on such a parameter--whether it be a

very small sample or a large one--to develop distributions on
such variables. As more data becomes available, these distri-
butions are updated and tightened according to Bayes Rule to
reflect his increased knowledge about the parameter. From the

*Derivations of the Poisson density function can be found in
any elementary probability text. See, for example, reference 4,
Chapter 4.

153



current distributions on such parameters, all the usual probabi-

lities of reliability theory can be computed by straightforward,

if sometimes tedious, application of probability theory in the

same manner that we were able to compute the probability that

k of the next m boiler tubes would be defective once we had the

present distribution on the physical parameter p in the last

section.

Surprisingly enough, taking this viewpoint will often re-

duce the data reduction and updating problem, since all our

present knowledge about a particular quantity  say, mean failure

rate of a certain gas turbine! is summed up in its present dis-

tribution and, as new data becomes available, this distribution

changes in a simple mechanical manner. This is especially true

if we choose the form of our distributions on the unknown para-

<<~]ggra,v<y+p P@gggg on +he ~e .o f >he yet~~}p gn .g~rvj�

the mean faiture

the system, m, but

mation to this hypothesis is to assume thai

rate is constant in any year of the life of

can change from year to year.

Under this latter assumption, if r is
m

ures in year m of the life of the subsystem

rate of failure of the subsystem in year m,

the number of fail-

and A is the mean
m

then

e  A ! m
Pr r i% !

r
m

154

meters in a judicious manner, as will be illustrated below.

5.4 A BAYESIAN MODEL FOR ANALYZING AGE-DEPENDENT FAILURE DATA

Assuming that failures are distributed according to the

Poisson density function for the entire life of a subsystem is

not a very interesting exercise, since if the probability of

failures does not increase with age then there is never any

point in replacing a component before it fails. Under this as-

sumption, there is no point in preventive replacement.

A more general hypothesis is to assume that the failures

are distributed. according to a Poisson distribution in which the



Of course, the DN! has no way of knowing with certainty

what. the X 's m=1,2,... are. Hence, we take a Bayesian view

and postulate a prior distribution on each A . As before, we
m

will choose our prior from a family of functions the form of

which family results in a great simplification of 0he Bayes

Rule calculations. For the Poisson density function such as

family of priors is the Gamma density function. The Gamma den-

sities are a two-parameter family given by

t' r' � 1
m m g t, ! m t'

m mf  A ~ r't'!
y m m,m r

m

This is a remarkably rich family of functions, some of whose

members are shown in Figure 5.5. Almost any unimodal density

If one chooses a Gamma prior with parameters r' and t' on
m

the mean failure rate of a component at age m and then observes

r failures of this component in t years of operation at age m,
m m

then by Bayes Rule the posterior distribution on A is given by:
m

t r

e  X t ! e  X t ! m t'
m m m rn mf  A. } R',t' r,t !rn m'm'm'm r ' r � l!~

m m

t r -A. t' r. -1

e  A t ! e  X t'! ~ t' dX

r!r-1!
m rn

 t +t'! r +r'-1 r r'
m rn m> m m m, m

m m m
rr-l!

m m
t, +t r +r � r rr e t t" dXm m m

r ! r � !
In In
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function over the interval [0, j can be at least roughly approx-

imately by a Gamma.
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r r'

t. t"
m m

 t +t'! r +r'-l
m m fh>~ e

r r
m

m m m m > t +r'-1 t +t'!
e A m m

m m

0

r mt, m  t +t'! r +r'-l
m m m m

e
m

r r
m, m  r +r'-l!!

m m

r ! rm' m r +r
 t +t'!

Cancelling out,

 t +t'! rm+r
' m' m4''

r +r'-1!!
m m

The denominator in the above expressions before cancella-

tion is the probability of both r and ! summed over all
m m m

According to the Sum Rule, it is simply the probability of r
m

failures in t years of operation at age m if the parameters
m

of the present distribution on A are r' and t'. This density
m m m

function which we will denote

'nB' ~ m"' '
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That is, if we start with a Gamma prior with parameters r' and
m

the posterior distribution on the mean failure rate of the

component at age m after observing r failures in t years of

operation of the system at this age is also a Gamma whose para-

meters are r +t' and t +t'. Once again we can circumvent the
m m m

Bayes Rule computations. The Gamma family is the conjugate

prior to the Poisson density.



is called the negative binomial. It corresponds to the Beta

binomial in the tube pulling problem.

5.5 A SIMPLE EXAMPLE OF HOW THE FAILURE DATA ANALYSIS WOULD
P ROCEED

The above description of the methodology for obtaining the

distributions on the number of failures and the loss per fail-

ure makes the analysis appear more complicated than it actually

is. To illustrate this, consider the following example. Let

us suppose from the data we find that there have been 10 fail-

ures of the component in question in year 4 of the life of this

component in 40 ship years of operation of the component when

it was 4 years old. We wish to determine the distribution on

the number of this type of failure in year 4 of the life of

the subsystem which is consistent with this data. To start

-. 1X

4Pr  A4!
.05

This distribution is shown in Figure 5.6. Its breadth and lack

of well-defined peaks indicates that at this point we are quite

unsure about the value of X4. The probability density function
on the number of failures in a year consistent with this dis-

tribution is shown in Figure 5.7. It is

fn  r41.05,.10,1!

Now, the advantage of choosing a Gamma prior is that our

distribution on m after having observed the data can be ob-
4
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out we need an original prior on the mean failure rate, A4.
Now, before analyzing the data, we don't know very much about

X4 other than its positive and it probably isn't very large.
To describe these wishy-washy feelings we need a correspondingly

indefinite prior--one where X is about as likely to be one
4

number as another. Suppose we choose a Gamma distribution with

parameters r4 = .05 and t4 = .1, that is
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Che da'ca.. :In fact we have seen that if r4 is tne' number
=ailures observed in t4 years, the conditional distribution

given the data is a Gamma whose parameters r" and t" are
4

sly:

given, say, r4 = 10 failures in t4 = 40 ship years, then
distribution on A4 after analysis of the data is a Gamma

i parameters r4 = 10 + .05 = 10.05 and t" = 40 + 1 + 40.1.
4

distributio~ is sketched in Figure 5.8.

Clearly this second distribution is almost wholly a product

.he data, as it should be, since our earlier feelings on �
so wishy-washy. In short, for any wishy-washy prior

~ll r', small t'! and any significant amount of data essen-

.ly the same posterior distribution will be obtained.* Of

.se, if we did have strong prior feelings about A4 for some
;on, we would pick a tighter prior and, as it should, the

;erior would be less affected by the data.

Of course, our real goal is not a distribution on A4, the
>own mean failure rate, but rather the distribution on the

>er of failures. As noted earlier, the new distribution on

the number of failures in a year, is

r 10. 05

f  r ~10.05,40.1,1!nB 4 10.05 + r4
r4r g 05! �1 1!

fact, by making r' = 0, t' = 0 the posterior distribution
1 be wholly a function of the data. Of course, r' = 0,

0 does not represent any real distribution, although it
~ be thought of as that distribution which given equal prob-
.lity �! to all points between 0 and ~. From this point
view, the original prior becomes merely a gedanken-experi-
~t to get our thinking  and our analysis! started.
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This distribution is sketched in Figure 5.9. Thus, we see

that our rather long-minded discussion leads to a simple alge-

braic determination of the distribution of r4 from the raw data.

Furthermore, updating with new information is even simpler.

Suppose that a year later we have observed one more failure in

4 ship years of operations of 4-year-old components. How should

we change the distribution on r4? Well, the old distribution
on A4, f> {14~10.05,40.1! becomes our new prior and r4 = 1 and
t4 = 4. Thus, the updated distribution on A.4 is

f>{A4~10.05 + 1,40.1 + 4!

and the corresponding distribution for r4 is

f {r4~11.05,44.1,1!

Thus, updating the distributions as a result of new data is

simplicity itself. These updated distributions are shown in

Figures 5.10 and 5.ll. In short, by properly choosing our

priors on the unknown parameters, raw failure and cost of fail-

ure data can quite easily be transformed into the relevant

distributions, and, further, these distributions can be up-

dated in a simple and natural way as new data becomes avail-

able without recourse to the original data'

5.6 THE AUTOMATIC REPLACEMENT LIST

As a simple example of how this thinking might be employed,

consider the situation facing a fleet operator or a military

commander who has a sizable number of ships coming in for over-

haul at regular intervals. One of the decisions which he faces

is, which items of equipment should be replaced even though they

have not yet failed or even exhibited particularly unfavorable

symptoms ? Now in the last section, we have seen that if the DM

is willing to postulate an age-dependent Poisson failure process

and Gamma priors on the mean failure rates at each age, then

the probability of r failures in a particular subsystem in a

time interval T at age m is
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r r'

T t'  r +r'-1!!
m m mP  r ~m!

+r

r! r 1 !! T+t !E"
m m ' m

This expression holds as long as the interval T is small enough

so that the probability of more tharr one failure in T is insig-

nificant. For most major seagoing components, if one chooses

a T of, say, 1/6 a year, the probability of multiple failures

in a single interval T will be negligible. r' and t' are the
m m

parameters of the present distribution on the mean failure rate

at age m,. For wishy-washy priors, r' is the number of failures
m

observed in t' years of operation of the component in question
at age m.

In order to develop an algorithm for deciding whether or

not a component should be automatically replaced at overhaul

and, if so, how often, consider the sequence of points in time
O,T,2T,3T,... where t = 0 is the launch time of the ship. Let
the nth time in this sequence be denoted by t . The t corre-n' n

sponding to overhaul are assumed to be chosen exogenously, that
is, the overhaul schedules are considered to be fixed as is

the length of life of the ship. Let C  m! be the cost of re-
S

placing the component during overhaul if the component is m
years old at the time. Let CF m! be the expected cost of fail-
ure of the component during operation at age m. C will be

F
difficult to estimate so, at least in the preliminary develop-
ment of this algorithm, the program might have to be run para-
metrically seeing what effect different C 's have on the resul-

F

ting replacement po 1 icy� .

Assuming the DN is an expected value decision-maker we

define W  x! to be the minimum expected cost of failure and
n

replacement of the component throughout the remainder of the

life of the ship if at time t this component is x T-periods
old. We proceed to derive a recursion relationship for the
function W . If at time t the ship is being overhauled, then

n n
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we have a choice: replace the component or don' t. If we don' t

replace it, we will incur no immediate costs with respect to

this component and at the next stage, t 1, that is, at t +T,n+1' n

the component will have aged to x.+i. The minimum expected
3

costs from t 1 on of being in this state is by definition
n+1

W  x+1!. If, on the other hand, we do replace the subsystem,
n+1

then we will incur a cost of C  x! and at time t 1 the compo-
n+1

nent will be only 1 T-period old. The minimum expected cost

from t 1 on of being in this state is W +1�!. Thus, if we
n.+ I n+1

are in overhaul at t ,W  x! is given byn' n

W 1 x + 1!

W  x! = minimum
n

C  x! + W+1 l!

This expression assumes no failure is possible between t and

t l. Generally, the ship will be in overhaul for at least one
n+1

T. If the ship is operating at t , then the expression forn'

W  x! takes on different form. In this case at t , we have non n'

discretionary decisions, we can only wait and see if a failure

at t 1 we will be in state x+1; if it does, then we will have
n+1

to bear the costs of replacement out of overhaul and at t
n+1

the age of the replaced system will be l.

The expectation of the value of the best we can do in each

of these two instances is W  x! or
n

W  x! = P � ~x! ~ W  x+1!+P �~ x! -  C  x!+W �! !

where the P's are given by the first equation in this section.

For any such component the table W  x! and the corresponding
n

optimal replacement policy can be computed by observing that at

the projected scrapping date of the ship, t< ,W  x! equals
0 for all x since no further costs will be incurred after the

ship is scrapped. This boundary condition can be substituted
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into the r.h.s. of the relevant expression for WN~ l and we
can proceed to tabulate W by backwards recursion using the

n

second to the last expression if t is an overhaul time and the
n

last expression if it is not.

The input to this algorithm then is:

l! The projected overhaul schedule of the ship through
its life--which t 's correspond to in-overhaul;

n

2! The costs of replacement in overhaul and the expected
costs of failure outside of overhaul, CS m! and CF m!;

3! The failure history of the component under analysis as
described by the number of failures which have been observed

in the component at each age and the size of the sample for
each age, the r 's and t 's. Notice that the algorithm is not

m m

adaptive in the sense that when a f ai lure occurs during the

process it doesn't change its ideas about the probabilities

in the same way that the boiler tube pulling program did. Since

the experimentation in this problem is not discretionary as it

was in the tube pulling case, this omission will not be serious,

especially if we rerun the whole algorithm periodically, in-

corporating the latest failure data.

The algorithm as outlined has been programmed and is quite

inexpensive to run, since the state space is very small.* For

each subsystem so analyzed, the output of the program is a table

indicating for each possible subsystem age at. each overhaul

time whether or not the subsystem should be automatically re-
placed. The program also outputs the optimal value function

which gives the future expected replacement/failure costs asso-

ciated with following the expected cost. minimizing policy.

*The program is available from the N.I.T. Department of Ocean
Engineering.
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5. 7 THE COST OF FAILURE AS A RANDOM VARIABLE*

In failure problems, the DM not only does not know the

parameters of the process generating the times of the failures,

but, also he does not know the parameters generating the cost of

each failure. This problem can also be treated in a Bayesian

manner by assuming:

1! The cost of an individual failure is generated by

a probabilistic process with unknown parameters;

2! Specifying priors on the unknown parameters; and

3! Using Bayes Rules to update these distributions as

failure cost data becomes available.

For example, one might be willing to assume that the loss

due to the kth failure of subsystem j,x.k, is generated by ajk'
Normal process with unknown mean and variance in which case,

if one assumes a Normal prior on the mean and a Gamma prior on

the Variance, then all the relevant distributions can be calcu-

lated without difficulty. The analysis is presented in refer-

ence l8, Chapter ll. In short, as above one can develop the

distribution on the cost of the kth failure, x.k, of each sub-jk'
system j,h, x. ! which is consi,stent with the DM's cost of

j jk
failure data and his prior feelings and one can update this

distribution in a mechanical manner.

Such distributions will allow us to address situations in

which the choice of a major subsystem depends critically on the

DM's feelings about the reliability and maintenance costs of

the alternatives but the DM has little or no failure data on at

least some of the alternatives. The classic example of this

type of problem is whether or not to go with a newly-developed

main propulsion system.

Before we can speak to such decisions, we must distinguish

between two types of failures:

*This section assumes somewhat more background in probability
than the earlier ones and can be skipped without loss in con-
tinuity.
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l! Those in which the subsystem which fails is effectively

replaced; that is, the effective age of the subsystem is zero

immediately after repair;

2! Those in which the subsystem is merely repaired � brought

back to the state it was in before the failure with no reduc-

tion in effective age. For subsystems of the second type, one

can obtain the distribution of the loss in any year due to j sub-

system failures by convolution. Let g x.~a! be the distribution
3

of the total loss due to failures of component j in year a of

the life of the ship where j is a component subject to Type 2!

failures.

Since

0 if r
aj

x. +x. +... x. for r .�
jl j2 ' jr . aj

aj

where r . is the number of failures of subsystem j in year a.
aj

Under the assumption that the distributions on the x.k's are
3k

the same and that the amounts lost on each occurrence of a

failure of j are independent, then g y.~a! r . times, and then
3

summing the results over r . weigh.ted by P  r . ~ a! . Then the
aj aj

expected annual cost of failures of component j, given that the

relevant component is a. years old is

C,  a! =   Y.g y. ~a!
3 3 3

3

Now, if the useful life of the ship is L years, then the present

value of expected cost of j failures over the life of the ship

is simply=

L

T.  L! =   p C.  a!
3 a 0 3

where p is the discount rate. The distribution of the total
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loss is simply the L-fold convolution of g y ta! with a running
3

from 0 to L.

The second type of repair in which the effective age of

the component is reduced to 0 presents a slightly more difficult

problem, for in this case we have a renewal process. To simpli-

fy the discussion, let us assume that the probability of more

than one failure of this type of subsystem in a year is negli-

gibly small. {This assumption can easily be relaxed.!

One approach to the problem of determining the expected

loss from failures of this type of subsystem through time is

through the relevant renewal equation. However, a related but

much. more instructive approach is to proceed as follows. Let

a be the age of the ship. Then, for all a such that O~a~L

define .W  m! to be the expected cost of failures of componentj a
j for the remainder of the life of the ship, given that the ship
is presently a years old and component j is m years old.

j L~ W  m! = 0, for if a = L the ship is retired and no future

costs can be experienced. For a <I the function .W  m! obeys
j a

the following recursion.

 o Im! -W l  m+1!

j a
.W  m!

+P  l I m! ~ [  $ g  x. ~ m! ~ x + .W l  l! J
x ~

3

This equation merely says the expected failure cost in the future

of the component at age m, given that the ship is a years old
equals the similar cost of the system at age a+l a year from

now if no failures occur, weighted by the probability of no

failure in year a plus the sum of the expected cost of fail-

ure in the future of the replaced system  weighted in year a!.*

Thus, the top line of the r.h.s. refers to the event "no failure

*Discounted expected cost will be obtained if the future failure
costs are multiplied by the discount rate.



in year n" while the bottom line refers to the event "failure

in year n.."

The probabilities in the above recursion are known at this

point. Therefore, we can solve for .W  m! in the following man-
j a

ner. Starting at a = L-l substitute .W  m! into the right-hand
j L

side. The left-hand side will then be .W l m! which in turn
j L-l

can be substituted in the right-hand side and .W  m! deter-
j L-2

mined. Continue this process until n=0 is reached. .WO�!
0

then is the expected cost of j type failures for a new ship.

In other words, .WO�! = T. L! for those subsystems for which
3 o 3

a repair is tantamount to replacement.

We are now in a position to speak to the problem of inclu-

ding failure costs in investment decisions. The total lifetime

expected costs due to mechanical failure of a particular ship
 say, diesel! is simply

  T.  L!
3

over all subsystems j

This sum can be included in the other costs associated with this

ship and the results compared with the similar quantity for the
other alternatives  say, steam! . Insofar as the DM is an ex-

pected value decision-maker, he should choose that alternative

which results in the minimum present valued expected costs.
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CHAPTER 6

SEARCH AND EXPLORATION PROBLEMS

Of course, not all marine decisions under uncertainty in-

volve vessel employment and acquisition or hardware maintenance

and replacement. An extremely important set of problems arises

in search and exploration. The sea is a uniquely opaque medium.

The problem of finding anything under the sea surface, whether

it be a lost submarine or a mineral or oil deposit, is corre-

spondingly difficult. The resultant costs are high and some-

times astronomical and uncertainty piles on uncertainty. In
this chapter, we will barely begin to dip our toes into the sea

of challenging search problems with which the marine environ-

ment confronts us.

We will start by discussing a problem in which our uncer-

tainties concerning the location of the searched-for object and

our uncertainties about the effectiveness of our search sensors

take on a particularly well-structured form, then we will move

to the general problem of oil and mineral exploration at sea.

6. 1 THE PALOMARZS PROBLEM

On the morning of January 17, 1966, a B-52 on a routine

training flight was taking on fuel from a KC-135, 32,000 feet

above the Spanish Mediterranean coast when both planes suddenly

caught fire and crashed on the coastline near the town of

Palomares. Four hydrogen bombs were aboard the B-52, three of

which were quickly located on land. The fourth bomb could not

be found and was presumed to be somewhere offshore. An under-

sea search for this weapon was mounted.

Due to the highly sensitive nature of the bomb, it was con-

sidered mandatory to either retrieve the device or to somehow

determine that it was extremely unlikely that unfriendly inter-

ests could locate and retrieve the object. The question then

facing the U.S. government and ultimately the President was:

how long should they search for the object without finding it

before the above criterion would, in some sense, be satisfied?
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There are 4~@ sets of uncertainties related to this type

of search problem:

1! The DM is uncertain where the object is;

2! The DM is uncertain as to how effective his search

sensors will be in locating this particular object.

The second. set of uncertainties is not only a product of

uncertainties as to the characteristics of the sensor but, much

more importantly, of uncertainties with respect to the charac-

teristics of the i~ zifu target. Is the bomb intact? What is

its orientation? Is it wedged in a crevasse? Is it buried in

mud or sitting atop a smooth bottom, etc.? The key to the solu-

tion of this type of problem is in keeping the two interrelated

sets of probabilities straight.

Let us con.sider the locational uncertainties first. In the

Palomares problem, since the point of collision was reasonably

well established, from the physics of the problem one could

delineate a region into which the committee assigned the respon-

sibility for managing the search was willing the stipulate the

bomb must have fallen. This region encompassed a portion of the

shoreline and a roughly fan-shaped portion of the shelf. Let

us divide the region into an arbitrary number of areas

 A : m=1,2,...M! based on geographical characteristics relating
to search effectiveness.

This partition of the region should be chosen so that a

pltio4i each area is roughly homogenous with respect to sensor
a +w~ "+ i~e~.

one sensor appl:-'eabi e to a particular area. Further,. we wz'l:I

assume that for each area, one can define what one means by a

"look" on that area. A look may consist of a chain of men walk-

ing down the beach or a complicated sonar search pattern. It

doesn't matter as long as what we mean by a look in each area

is well defined.*

*The determination of efficient "looks" or area search patterns
is an interesting subproblem of long standing. See references
8 and 15.
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6.2 DEVELOPMENT OF DETECTION PROBABILITIES

Let L be the event that the object is actually located

in area m. The first step in tackling this problem is to devel-

op a prior distribution on where the object is, a distribution
on the events  L :m=l,...M!. Let f =Pr L ! be this distribution.

m m m

This is by necessity a subjective distribution representing
the DM's feelings about whatever knowledge about the accident

he has prior to any search. As such, it could be obtained by
Bayesian decision theoretic introspection as outlined in Chap-
ter 2. In the case at hand, the problem was turned over to a

committee of experts. Therefore, a mechanism had to be evolved

for arriving at a prior which the committee could collectively
agree was consistent with the prior information relating to the

location of the bomb. The committee evolved the following pro-
cedure for making sure that the investigators had incorporated
all their prior knowledge about the accident into the prior and
incorporated it in an internally consistent manner.

A number of possible scenarios or reconstructions of the

accident were postulated such as:

l! Device stayed with main part of plane's fuselage.
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2! Device separated immediately from plane at point of

impact and fell.

3! Device separated immediately from plane, deployed

parachute and fell. And so on.

fo
m ! » ~,! I ~!  » *!

 x,y! aA

Xn short, by breaking the prior into an "objective" condi-

tional distribution and transferring all "subjective" judgments
to a single variable, a prior which a number of people could

agree upon was derived. This device can often be used to advan-

tage in developing priors which incorporate all our prior knowl-

edge in a consistent manner whether or not a committee is

involved.*

The second set of uncertainties involves the effectiveness

*From a Bayesian point of view, perhaps the most significant
point of the whole Palomares incident is that it illustrates
that subjective probabilities have been used and accepted
at; the highest level of decision-making in the U.S.A. When
DM's are faced with a critical problem where uncertainty is
obviously crucial, biases against attempts to deal with un-
certainty systematically can quickly disappear.
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In all about ten mutually exclusive and collectively exhaus-

tive hypotheses were developed. For each such hypothesis, it
was a relatively simple matter to use the physics of the postu-

lated scenario to develop noncontroversial distributions on the

point of location of the device condiXionaZ on 4ke. scenarios

actually hav~~g 4akerr place.. Call these probabilities p x,yI z!;
p x,y~z! is the probability that the device is located at
point  x,y! if scenario z actually occurred. Having developed

these conditional distributions, the various experts involved

sat down and argued among themselves until they reached agree-

rnent on an unconditional distribution p z! representing the

probability that scenario z had in fact happened. At this point
they had the required prior, for by the Sum Rule:



of the search. We need to know p , the probability that we will
find the object on the next look in m given 4ha4 Xhe. obj eel iz
ac4uaZZg <n m. Unfortunately, we can't be sure of p . It willm'

depend, among other things we can't know for certain, on the
exact location and condition of the object, and its immediate
surroundings. In short, p is an unknown and, therefore, as
Bayesians, it has a distribution function. Let g  p ! be its

m m
distribution. Since p is a probability the natural choice for
the form of this distribution, as we saw in Chapter 5, is a
Beta. Therefore, assume with little loss in generality that
this prior is a member of the Beta family of distributions. Let.
the prior parameters of this Beta be r' and n'. That is,

m m

In an actual problem,  r',n'! would be derived from detailedm'

operational studies of the effectiveness of the sensor in A
m'

given the search pattern chosen for A and the physical charac-
teristics of this area.*

At this point we must make a critically important assump-
tion. Ne must assume that our feelings about sensor effective-
ness in a particular area m are unaffected by what we learn
about sensor effectiveness in any other area m . Strictly

0
speaking, this would be true only if our uncertainties regarding
the effectiveness of our sensor in a particular area were solely
due to uncertainties regarding the target and its background,
and further that the backgrounds are independent. Even if we
choose our areas judiciously this will hardly ever be true, but
given a sensor with which we have considerable experience, any

"It will generally be wise at this point to repartition the
search region so that each area is roughly homogeneous with
respect to 6okh prior sensor effectiveness and prior proba-
bility of being located into this area. Such repartitioning
can lead to less costly searches. Since in the problem at.
hand cost was a very secondary consideration, it will simpli-
fy the exposition if we stay with the original partitioning.
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] I
Pr F ~L !Pr L !

!
Pr F !

�-p  r',n'! ! f
In' m m

1-p  r',n'! f
8 m'm m

n'-r'- f 0
m In m

As common sense and the above expression indicated f <f 0
In rn'

But we know that the object is somewhere in the region or

m mZPr  L ! =1 where Pr  L ! is our present probability on the
In

objects being in m. Thus, when we decrease the probability of
the objects being in m we must renormalize the probabilities
on the objects being located in the other areas accordingly.
These renormalized values can also be obtained by Bayes Rule:

For any m g m
0

1 I
Pr F IL !Pr L !

0 0f = Pr L I Fm
0 0 Pr  Fm !

1-Pr  L !
In

0

'-Pq m "m!'m

fo
0

1- r'/n'! f
m m m
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1looked there and didn't find it? That is, what is Pr L -F ,!

which we will denote by f ? In general, f will denote the
In m

present probability that the object is in area m , given the pat-
tern of looks prior to the present and that we have yet to find
the object. By Bayes Rule,





1'
3. g  p ~F L !, the probability that the likelihood

m m mm

of finding the object in m on the next look is p , given

that we didn't find it on the first look in m and it

is there. In short, we want the posterior distribution

on p after not finding the object on the first look
m

in m.

The first of these three probabilities is related to the

second and our new  present! probability on the object's being

located in m,f , bym'

Pr F jF ! = Pr F IF L ! Pr L ~F !+Pr  F  F L'! Pr L'  F !
2 ]I 2 1' ] 2 1 1'

= Pr F IF L ! ~ f
2 1'

Ne will denote this probability by h ~ More generally, h ism' m

the present probability we will find the object on the next look

in area m, given the pattern of looks up to the present.

The second probability is related to the third by

2 1' ] I

0

which is merely a restatement of the result that the probability

of finding the object in the next look in m, given it is there,

is equal to the mean of our present distribution on p . Finally,
m

the third distribution can be obtained by Bayes Rule

]

'-' ---m-~n m '>~.m

Substituting in our Beta prior, we obtain
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I j
p!  B«' n'! >  lp! mm rn' m m

l
-1 r -l n -r -l1 I

IA
f  l-p ! ~  B  r ',n ' ! ! .p rn ~  I-p ! m m dp

m' m m In m

r'-1 n'+1-r'-1

IA
pm ~  lp!mm

m

B r,n +1m' rn

f  p ~r',n'+l!

The posterior distribution on p after an unsuccessful look in

m iS a Beta diStributiOn With paraIneterS  r',n'+l!. In general,
In' m

after n unsuccessful looks in area m, the distribution on p
IA In

will be a Beta with parameters  r',n'+n !. Notice that this
m In m

distribution is not affected by the probability that the object

is actually in rn nor by the results of any looks taken outside

of IA. This is a product of our definition of p to be the prob-
IA

ability of finding the object on the next look in rn give.n fha4

4kece. and our assumed lack of dependence between sensor

effectiveness in area IA and sensor effectiveness in any other

area.

Given the above result we note that the probability of

finding the object in area m on the next look, given that it' s

there and we have already had n looks in this area, is the mean

of a Beta with parameters  r',n'+n ! or r'j n'+n !. Thus,
m' m rn m m rn

the probability of finding the object in m, given that it's there,

decreases inversely with the number of looks we have already

taken at, rn.

6.3 SEARCH CUT-OFF CRITERION

We are now in a position to speak to the problem of deter-

mining a cut-off point for the search. In order to do so, we

will have to assume a search strategy. If differentials in the
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cost. of taking a look in area m as opposed to taking a look in

some other area are insignificant or at least small, one obvious

strategy is to always take your next look in the area which has

the highest current probability of discovery, h , i.e., the
m

highest r'-f  n'+n !.. This strategy will maximize the probabi-
m m m m

lity of discovery in any finite number of total looks, N. If

we use this strategy, it is a relatively simple matter to cal-

culate the probability of discovery within N looks for any N.*

The probability of no discovery in N looks, H N!, can be

recursively obtained by simulating the search process H�!=1.0.

Start the simulation by beginning with that area which has the

highest h =m  r',n'!f . Say it's m*, then H l!=H�! l.-h �!.

Assume no luck. Calculate new h 's for each area using the

relations given above. Pick area which now has the highest h

say, m**. H�!=H l! ~ �-h «�!. Assume no success. Calculate

new h 's. Pick area which has highest h ; say, m**".

H�!=H�! �-h «««!. Continue in this recursive manner as longm***

as desired. In general, H N+1!=H N!-�-h ««« «««!.m**« ***

~M+3.� y

Having calculated H N! for all N of interest, it is a simple

matter to obtain H N[J!, the conditional probability of not find-
ing the object on the next N looks given that we have already

performed. J looks and not found it. By the definition of con-

ditonal probability:

  [ ! H N+J!
H J!

for H  N+J! is the probability of the joint event "no discovery in

first J looks and no discovery in next N looks."

H N[J! will be an increasing function of J due to the mono-
tonic decrease in the probabilities of finding the object on

the next look in an area, given that it's ther' That is, the

longer we look without finding the object, the higher the prob-

*The following recursive procedure works equally well for any
completely defined search policy.
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ability that, we will not find it in the next N looks.

The two-dimensional table H N~J! will allow us to establish

a cut-off for the search. To do this we ask the decision-maker

to prescribe a combination of number of looks by unfriendly

forces and a probability of no discovery in this number of looks

which he wants to exceed. For example, he may say search until

he finds it or the probability of not finding it in the next

lOGO looks is greater than .999. The decision-maker is tacitly

assuming that the unfriendly forces have the same sensors and

the same priors as we do. Substituting the decision-maker's

requirements of N=1000 and H�000~J!>.999. We would search
H�000~J! for the lowest J such that the corresponding H�000 J!
exceeded .999. This should be the length of our search if we

are to be consistent with this statement of the problem. Of

course, the indicated J could be 0 in which case we shouldn' t

search at all. This is not a necessarily unreasonable possibi-

lity, but it does hint. at one of the defects in the above problem

statement. The costs of search and the costs of having unfriend-

ly types find the bomb which is the real trade-off involved have

..saves. been made exgli~ ~leaz3.v if, ~he .~Wave met.bndo3.na~

is to be maae useful fox=any-but the most internarionallv sensi-�

tive searches, means for incorporating the relevant cost func-

tions into the analysis will have to be developed. Some prelim-

inary ideas in this direction are developed in the following

section.

6.4 ALGORITHMS FOR ALLOCATING SEARCH EFFORT

If the number of areas in a Palomares type search is quite

small, for example, three, then it is possible to develop dynamic

programs for solving several variants of the search allocation

problem. The most straightforward such algorithm speaks to the

situation where the searcher's preference function depends only

on the cost of the search and whether or not the object is found.

That is, we do not have the "what if the other side finds it?"

problem. Let vr X,C! be such a preference function where X=1 if
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 stop the search!vr  O,C!

 look in area l!
hl > l,C+Cl +1-hl -W +1 nl 'n2

W  nl,n2!=maximum
n

 look in area 2!
h2 m �,C+C2 + �-h2 - Wn+l  nl,n2+1!

  look in area 3 >
h3-m l,C+C3!+�-h3! -W +1  nl,n2!

where C=nlC1+n2C2+ n-nl-n2!C3 and h is as defined in the
m

preceding analysis. In order to get the computation started,

pick a number of looks, K, which is large enough so that one
can be sure if the search lasts this long it should not be con-

tinued. Then WK nl' 2 =m O,nlC1+n2C2 1 2!C3!.
Depending on the choice of K and what is a reasonable maximum

on the number of looks in any particular area for the problem

at hand, searches with three, four, or possibly five different

areas will be computationally feasible via this algorithm.*

If the DM is worried about the other side, then one possible

approach is to expand his preference function to include this

worry. Let m l,C! be as before, but assume that if the search

ends without discovery the DM's preference depends on

*The above recursion, of course, assumes a three-area search.
The equivalent four- and five-area algorithms can be obtained
by adding a state variable for each additional area.
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object is found and X=O if object is not found and C is the cost

of the search. Let C be the cost of a single look in area m.
m

A Bayesian will attempt to maximize his expected preference so
define W  nl,n2! to be the maximum expected prefence associatedn

with the search attainable if we have already made nl looks
in area 1, n2 looks in area 2 and n-nl-n2 looks in area 3. Such
a pattern of looks implies that we have already spent n C +n2C2
+ n-nl-n2!C on the search. Thus, W obeys the following recursion:

n



a! The cost of the search;

b! The probability that the other side vill not find the

object in the next N looks, H N~given pattern of looks up to
now!. Let ~ H,C! be this preference function. In this case,

the above algorithm is unaltered except for the first line in

the right-hand side which becomes vr H N~pattern up to now!,c!
where H can be calculated at each stage and state by assuming

that the other side follows the probability of discovery maximi-

zing search outlined in the last section, given the various

probabilities obtaining at this stage and state.

The above formulation of the problem puts a heavy onus on

the DN to come up with a preference function. He may simply pre-

fer to throw up his hands and say, "Here is C dollars, give me

the search that maximizes the probability of discovery within

this budget." In which case, define W  nl,n2! to be the maximum
n

probability of discovery attainable, given that we have already

looked nl times in area 1, n2 times in area 2, and  n-nl-n !n

times in area 3 without finding the object. Then

W  nl,n2! = maximum h ~ 1+�-h ! -W +1 nl,n2!

where n' equals n +1 if m=1 and n otherwise, n'=n +1 if

m=2 and n2 otherwise, and the maximum is taken over all m such
that nlCl+n2C2+ n-nl-n2!C3+C <C0. If no m meets this test, then
W  nl,n2!=0. Start computation with an n high enough so that, one
can be sure no m meets the test.

By solving the above algorithm for a range of budgets, C

one obtains the cost-effectiveness curve for the problem, i.e.,

the maximum probability of detection that can be obtained for a

given budget.* For each of the cost-effective strategies it is
an easy matter to calculate the H N~pattern of search! for the
strategy. This function along with the cost-effective curve

*Or equivalent to the minimum budget needed to obtain a specified
level of the preference function.
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can then be presented to the decision-maker and he can, by ap-
plying his preferences directly to the set of cost-effective

strategies, decide on a budget. Often DMs have a much easier

time with the latter kind of decisions than they do with devel-
oping multidimensional preference functions.

5 THE OFFSHORE OIL DECISION THEE

Presently five billion dollars a year is being spent in
the search for and development of offshore oil and gas fields'
The individual investments adding up to this figure are being
made in the face of grave uncertainties concerning how much oiL/
gas will be found, if any, and how much it will cost to Locate
and discover whatever resources are there. Obviously, offshore
petroleum exploration decisions represent a worthy subject for
our techniques. Unfortunately, they are so difficult that we

wilL be able to make only a little progress towards their solu-
tion. However, the importance of these decisions makes even a

little progress at least mildly interesting.

It is not difficult to draw up a segment of the decision
tree facing the offshore operator contemplating exploration of
an as-yet-undeveloped area. At present, there are only two use-
ful means of obtaining data concerning the offshore oil resources
in a particular area: seismic tests and drilling. Hence, in
dealing with an individual locale the offshore oil operator is
faced with what may be regarded loosely as a two-stage decision=

l! Whether or not to run a seismic survey in a particular
area;

2! Following this decision and the results, if any,
whether or not to drill in the area. A decision

tree describing this sequence is shown in Figure 6.2.

The cost of a seismic survey offshore can run a million

dollars; a single offshore oilwell can cost two to three million

dollars. The tree shown does not allow for the uncertainties

with respect to these costs, but concentrates solely on the un-
certainties with respect to the seismic results and the results
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FIGURE 6. 2
THE OFFSHORE OIL TREE
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of the drilling.

Seismic tests result in a pattern of returns revealing
 some of the! density changes in the subseabottom rock. This

pattern is interpreted by a geologist for structures associated

with oil deposits. In Figure 6.2 we have abstracted the results
af this process by assuming the geologist distinguishes only
three categories of results: no structure  NS!, open structure
 OS!, closed structure  CS!.

In general, closed structure is more likely to yield petro-
leum than an open structure which, in turn, is more favorable
than no structure. In actual fact, a geologist's discrimina-
tion process is much more refined than this. However, let us at
least start with this three-way category. The number of kinds
of seismic results can be expanded as desired. Call the test

results x, i.e., x equals either NS, OS or CS.

An exploratory well results in a flow  hopefully! and core
analyses from which a petroleum engineer estimates the number of

recoverable barrels  cubic feet! in the reservoir located, if
any. Ne have called this random variable y in the figure.

Given such a tree, there are two sets of probabilities with
which the DN must be concerned:

1! Pr y~x!, he conditional probability on the number of
recoverable barrels, given the test results;

2! Pr x!, the probability of obtaining a particular test
result..

If the DM knew these probabilities for all possible values
of y and x, he could assign them to the relevant branches in

his tree, apply his preference function to the tips of each path
iP 3 k4 2 -W, lId- -S3.3 +1K U~ khf:WL 11@. AK ' -a.cCLQSJXl. manne= �.

general, of course, the DM has no way of knowing these probabili-

ties with certainty. Therefore, as a aayesian he will have to
regard these probabilities as random variables and set up a

sampling process for developing and updating distributions on
these unknowns.



6.6 A BAYESIAN SAMPLING PROCESS FOR Pr yix!

We will begin by developing a Bayesian sampling process

aimed at the probability of recoverable reserves amounting to y

given a particular test outcome, i.e., conditional on a particu-

lar x. Since all the probabilities in this section will be con-

ditional on this particular x, we will suppress this conditioning

event in the notation. In the next section, we will consider

the distributions on the test results, Pr x!.

1! The postulation of a sampling process which process

is described by a set. of conditional probabilities on the pos-

sible outcomes of the sample, Pr outcome~underlying state of

Nature!. In Joe's case the underlying state of Nature was either

"a peach" or "a lemon" and the conditional probabilities were

Pr test outcome~P! and Pr test outcome~L! for all possible test
outcomes. In Chapter 5, the unknown underlying state of Nature

was characterized by parameter s! of a specified density function

such as the mean rate of failure, A, in a Poisson process or the

p in the Bernoulli process.

2! The development of subjective distributions on the

unknown state of Nature. These distributions were called priors.

3! The use of Bayes Rule to obtain a new distribution of

the unknown state of Nature after having observed a particular

test outcome. We saw that this calculation was considerably

simplified if the form of the prior was chosen to match the form

of the sampling distribution, in which case we said we had a

conjugate prior.

In the problem at hand, y is the amount of recoverable re-

serves obtained in a single well. Hence y is certainly non-

negative but, as wildcatters well know, just as certainly has a

finite probability of being zero--a dry hole. Conditional on x,

the density function on y might have a form such as that shown

in Figure 6.3, with a spike at y = 0 and some continuous unimodal

density function for y's greater than 0.

The question is: what. would be a reasonable functional form
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FIGURE 6.3

HYPOTHETICAL DENSITY FUNCTION
ON RECOVERABLE RESERVES LOCATED

y=0
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to assume for this density function? Kaufman, reference 6,

has argued that a Lognormal distribution might do the job and

reference 6 presents some empirical data to back up this con-

tention. as well as an argument based on the Lognormal as the

central limit of a multiplicative process. However, the evi-

dence is not too convincing in the sense that a large number of

other functional forms could also be made to fit the data, and

further it is not clear in what sense the sedimentary processes

leading to petrochemical formations are multiplicative. Another

set of sampling functions which are at least as flexible as the

Lognormal and which have the practical merit that we have al-

ready seen them are the Gamma density functions. Thus, this

section is going to investigate the possibility of a sampling

process in which the probability of actually obtaining reserves

of x barrels, given that we have observed a particular seismic

outcome, say, Open Structure, is

for y = 0

f  y~p,X,r!

 l-p! ~ for y>0

*As mentioned earlier , in thi s section we are suppre s s ing the
argument x . In other words , written out in full thi s density
funct ion i s f  y ~ p   x ! , X   x! , r   x ! ! . We will have one such den-
s ity function for ea ch pos s ible sei smi c outcome .

1 9 0

v>~ ~ a,�$, an!�x are,ghg iq >gvayauwtgzs davgpp JAs
lllllllilllillllllllJ IIIIIIIII' IIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
~tate- or . Nature;; . g1Ven Kate 5 . . :-- u 08 ;-

One- can deve lop a pseudogeologic a 1 argument for choosing
this particular functional form . To wi t , with a certain proba-
bili ty p Nature chose to co l lect no sedimentary depos i ts at the
drilling location . I f , on the other hand , she did choose to

make such depo s i ts , the length of the sedimentary periods and

hence the recoverable reserve s obtain ing from each such period
was determined by a Poisson proce s s of parame ter A . The number

of such periods was r . This argument. derives from the fact that

the sum of r time periods resulting from a Poi s son process is



distributed according to the above Gamma. ~ile this scenario

bears a faint resemblence to geological reality, it is, like

Kaufman's argument for the Lognormal, hardly convincing. The
basic and more important point is that this is a very flexible
three-parameter family which can be made to fit just, about any
having the general characteristics of Figure 6.5.

Step 2 in developing a Bayesian sampling process involves
the postulation of prior on the unknown states of Nature, in
this case, on the parameters p, X, and r. Let us regard the
sampling process as sequential in the sense that, when we
obtain a y after drilling, we first ask: was the well dry or not?
If the answer is No, then we ask. how large was y7 This sequential

viewpoint is sketched in Figure 6.4. Viewed in this manner,
it. is clear that the conjugate prior for p is a Beta for, at the
first question, we have a simple Bernoulli process with only
two possible outcomes either defective  dry hole! or not--the
same kind of process we had in the boiler tube pulling problem.

Further, if the Beta prior on p is f~ pound,n'! then by the argu-
ments in Chapter 5, after having observed. nd dry holes in n at-
tempts given seismic result x, the posterior on p is f  p!nd+nd,n+n'!
and the probability that y=O is the respective Betabinomial.

Given the above sequential viewpoint, we can regard the
Gamma part of the above density as the conditional probability
of y given y>0. 'Nith respect to X and r and parameters of this
Gamma we have three possible cases:

l! r known,X unknown

2! r unknown,A known

3! r unknown,K unknown

Actually, the third case is the only one we are really inter-
ested in, but for pedagogic purposes we want to sneak up on it

gradually.
The first case is quite similar to the situation facing us

in the automatic replacement problem and as in the automatic
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FIGURE 6.4

BLOW UP OF THAT PORTION OF OFFSHORE OIL
TREE CONDITIONAL ON SEISMIC OUTCOME

l92



replacement problem the conjugate prior on A is a Gamma. For

suppose we postulate such a prior on A,f  X~s',m'! and then
Y

observe a result y>0. By Bayes Rule

 r � 1! !
f  AIy,l,s',m'!

-Ay  !, ! r-l~ -AsK 'm 'd
0

 r � 1! !  m' � 1!

-X  y+s'!
e

r+m' -1

-X  y+s'! r+m'-1
f e
0

e
-X y+s'! r+m'-1

r+m -1

r+m
 y+s I !

 Z~y+s',r+ '!
Y

Notice that each time we get a wet hole after having observed

the seismic result to which this density applies we up the sec-

ond parameter m' by the  assumed for now! known r. Hence,

after a large number of wells have been drilled given x, the

second parameter will be approximately the number of wet holes

times r.

If case 2 obtains--X known but r unknown--then we must

postulate a prior on r. The secret to picking a conjugate prior

is to pick a density function which ab a  unction. 0$ the. unheavy

patamWert, looks like a generalization of the sampling distribu-

tion regarded as a function of the same parameter. From the

point of view of r, the Gamma sampling density has the form

-Ay
where C = e A is a constant as far as r is concerned. Hence,
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we postulate a prior of the form

 t, ! r-1
f  rI t',j'!

C t',j'!   r-1!!! j

where r is restricted to the positive integers since we know

y>0.  Remember r can be interpreted as the number of sedimen-

tary eras leading to the deposit.! In the above expression

r-1

C t', j '!
r=l   r-1!!!j

is a normalization factor such that the density function sums
to 1.00 over all possible r. Notice it depends only on the

parameters of the density function and not r. We shall call

this family of distributions the hyperPoisson density denoted

hp

The posterior on r after having observed a y>0 in a single

well is given by

,r-1
f  r~y,l,t, j '!

c t',j'!   r-1!!! j

t,r-l

C  t', j '!    r-1!! ! j

 A t'!  r-1!! !

 ! t'!

r=l    r-1! ! ! j
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which proves that the hyperPoisson is the desired conjugate

prior. Notice that y and t' combine in a multiplicative manner

increasing the first. parameter if y is greater than the  assumed!
-1

known mean of the process, X , and smaller otherwise.



The second parameter increases by one with each relevant dril-

ling and hence after many such wells will approximately equal

the number of wet holes drilled after observing seismic result x

As usual, the denominator in Bayes Rules is just the prob-

ability of the conditioning event. Hence, in this case

-Ay r-1 ,r-1
 A ! Xt'

r=l   r-1! L! C t',3

equals the probability of observing recoverable reserves of y

on the next wet hole drilled after observing x if the present

updated parameters of the distribution on r are t' and j', which

we will call Pr y!k,t',j'!.
t'C t',1! is simply e and fh>  r~ t',l! is the familiar

Poisson, hence the name hyperPoisson. C t ',2! = I0 �t '} !1/2

where I0 is the zeroth order modified Bessels function of the
first kind. The higher order C's have not been given names, but

since they converge extremely rapidly computation is no problem.

The real-life situation in which neither X nor r are known

is slightly messier. In this case, we must postulate a joint

conjugate prior on the pair of random variables,  A,r!. Such

a density function is the following four-parameter prior:

e
-sA m'  r-1!+j '-1 j ',r-1

f  ~,r ~ s',t', j ',m'!
s t '

  r]!!�C sl tljl ml!

where

-s ' m!  r-1! +j '-1, j ', r-1
C s',t' j ' m'! = $ j s' t,' dX

r=lo   r-1! '!

To show that this function is a conjugate prior, assume a single

sample yields y>0.
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r-1> -s'A m' r-l!+j'-l j' ,r-ld>
I

  r-1!! ! C s',t',j ',m'!r=l  r-1! !

e
-A  y+s'!  rn'+1!  r-1!+ { j '+1! -1, r-1

  t'!

   r-l!! !

! r-1 -A  y+s' > m'+1!  r-1!+ g +

r=3.   r-1!! ! ~ 0
dh

e
-A  y+s ' !  m '+1!  r-1! + { j '+1! -1, r-1

  t'!

   r-1! ! !
'+1

   m'+1!  r-1! +   j '+1! -1! !
,! m+ r- + g +

e
-A  y+s ' !  m'+1!  r-1! +   j '+1! -1, j '+1, r-1

 y+s '!

   r-1! ! ! C  y+s ', t 'y, j '+l,m'+l!
+

= f  ~.r 1 y+s ',t 'y, j '+l,m'+1!

where we can be sure that the constant in the denominator is

of the same functional form as the C s',t',j',m'! since the

entire expression summed over both X and r is 1.00 {because
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Bayes Rule preserves the basic normalization of probabilities!

and the numerator is of the same functional form as the prior.
In. short, this prior is a conjugate prior to the Gamma sampling
function when both parameters are unknown. Notice that despite
the long-winded expressions, the combination of the prior para-
meters with the data is of the simplest possible form. Notice

also that both j' and m' will increase one with each relevant

drillizg so that after a reasonably large number of such wells

are drilled they will both be approximately equal to the number
of wet holes drilled. after observing seismic result x. If j'
is assumed equal to m', then the above expressions can be sim-



plified considerably. The author hesitates to give a name to

the above prior, but it might be called the Gamma-hyperPoisson

since it is a mixture of these two densities. As usual, the de-

nominator in Bayes Rule is the probability of the conditioning

event. Hence, given that the present parameters of the distri-

bution on X and r having observed seismic result x are

 s'  x!,t' x},j ' x!,m' x!!, then the probability of a wet hole 's

yielding y barrels after seismic result x is

f  y ~ s'  x!,t'  x!, j '  x!,m'  x! !

m ~ -Xy r-l -s'  x! A m'  x!  r-L!+j '  x! -1, j '  x!, r-1

r=l o    r-l! ! !    s'  x!,t'  x!,j '  x!,m'  x! !

These are the probabilities we need for the wildcatter's decision

trees' There will be one such distribution for each possible

seismic outcome, x. With the probabilities developed in this

section we can assign the requisite probabilities to the portion

of the offshore operator's tree which follows a particular seis-

mic result. Such a subtree and the indicated assignments are

shown in Figure 6.4.

6. 7 THE UNCONDITIONAL PROBABILITLES ON x

In order to complete our assignment of the probabilities to

the tree of Figure 6.2, we need the unconditional probabilities

on each of the possible seismic outcomes. Once again we will

have to postulate a sampling process and develop a prior distri-

bution on the parameters of this process. We have assumed. the

number of possible seismic outcomes is finite--in fact, we have

talked as if there were only three, No Structure, Open Struc-

ture, and. Closed Structure. However, we can as easily develop

the argument for any finite number of outcomes. Suppose the

geologist separates seismic results into K categories and let

the event 'result is in category k' be denoted by xk.

In this situation, the natural sampling process to assume

is the Multinomial. The Multinomial process with K possible out-
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comes is characterized by a K-1 paramenter family of density
functions. Let nk be the number of times xk is observed in
n k5] nk tr ia 1 s . I f we are dea 1 ing with a Mu 1 tinomi a 1 proces s

ilif'.� !;hat= y. ==-cocUs~ .q fA~esy �,.==-=<>o"-ars~n~ ~~mes,,
~ A JII ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I &hI ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ 5%5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 555555

g? e. p oQab
~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5 ~ 5$5~5 ~ 5 ~ 554lape

n Jl Pknk

k=1fg~ ] 2 ''' kIpl p2 ~ .. p]!

Il nk!
k=1

where the pk's, the parameters of the process, are such that
K

kZ1 pk = l.00. This is a straightforward generalization of the
Bernoulli process for situations in which there are more than

two possible outcomes. The pk's can, of course, be interpreted
as the probability with which Nature picks the kth outcome.

Of course, we don't know what Nature's pk's are so we have to
postulate a prior on them. The conjugate prior in this case is
the Vector Beta which is given by

K K

k=1 k=1I I 48 1' 2'' kj 1' 2'' ' K'
K

n'k!
k=1

*Reference 12 generalizes this argument to the case where one
has a set of unknown vectors of the form  pl,p ...p ! as one
does in a Markov process with unknown transiti6n pr5babilities.
For this situation, there exists a straightforward generaliza-
tion of the Vector Beta known as the Matrix Beta which serves as
a conjugate prior. Through the Matrix Beta, a Bayesian can de-
velop his probabilities concerning a Markov Process about which
he has limited information. A case in point are the transition
probabilities required by our first formulation of the vessel
employment problem in Chapter 4.
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Notice how the form of f~ has been chosen to match the form of f
M

It is almost obvious from this match and can easily be shown that
the posterior on  pl,p2,...pK! after having observed nl occur-
rences of xj n2 occurrences of x2, and so on. is*

f  pl p2 p! ~ nl+nl n2+I12 nk+ k!



Given that the current, update,d parameters on  pl,p2...pK! are
 n',n',...,n'! then the probability of outcome xk on the next
test is

k ~ Pk ~;' I g Pl'P2'' ' PKI 1' 2 '' K'
Pk Pkg k

It is easily shown  see reference l2, Chapter 6! that the inner

multiple integral which equals the marginal density of pk is an
K

ordinary Beta with parameters  nk kZ1 hk! . Thus, the above
expression implies that the desired probability is the mean of

this marginal density or

Pr  g l nl.n2- - -nK! =

nk
k=l

Thus, for large numbers of trials or wishy-washy priors, this

probability will be approximately equal to the ratio of the num-

ber of times result xk has been observed to the total number of
tests. In any event, if we keep track of the number of times

each result has been observed we are in a position to assign

probabilities to the leftmost set of chance branches in Figure 6.2.

6.8 THE NO TEST OPTION

Seismic tests are expensive and can often yield very little

information. Thus, the operator will certainly want to analyze

the option of drilling without tests just as Joe had to consider

the option of not having the yard look at his ship, which option

in fact turned out to be Joe's best move when we analyze his

problem using a non-EMVing preference function. The probabili-

ties associated with the no-test option are not independent of

the probabilities we have already derived. What is required for

this portion of the tree are the probabilities of the various

possible y's unconditional on the test results. But by the Sum

Rule

K

» y! =
k=1
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and we have just derived both sets of probabilities on the right-

hand side of this expression. In short, our assignment of the

probabilities to the tree of Figure 6.2 is complete.

6.9 SUMMARY

We have seen that, under this formulation, the operator's

state at any time can be described by the following update,d
parameters:

1!  nl,n2 " " 'nK! where nk is the neer of times he has
observed seismic result k plus his original prior

parameters on pk.

2! For each xk, k=1,2,...K,

a! nd xk!,n' xk!, the number of dry holes and wetk ' w

holes drilled after observing xk plus the original
prior values of these parameters.

b! s'  xk!, t.'  x !, j '  xk!, m'  xk!, the sum of the recoverable
k

reserves obtained from wet holes drilled after ob-

serving xk plus the original prior value of the
first parameter, the product of the recoverable

reserves obtained from wet holes drilled after

observing xktimes the original prior value of this
parameter, the number of wet holes drilled after xk
plus the original prior value of the second to the

last parameter, and again the number of wet holes

drilled after xk plus the original prior value of
the last parameter.

Even allowing for redundancies in the above list, the number

of state variables required to describe the operator's position

at any time is approximately twelve even if only three possible

seismic categories are allowed, so dynamic programming of the

coupled drilling decision is out. This is a tough, complex prob-

lem. It will not admit of easy solutions. Even the rather corn-

plicated formulation described above is highly unrealistic in

many aspects and it treats each drilling decision somewhat in
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isolation. However, such complexity is a two-edged sword. It

implies that the unaided intellect will also have a very diffi-

cult time of integrating all the relevant data and coming up with

decisions consistent with the DM's desires. In such cases, it

may well pay the DM to study the results of making even some

rather unrealistic assumptions to see where they lead him. The

insight that results, while not determinant, will often be worth

far more than its cost in which case the decisions will be im-

proved, and that is the name of the game. Of course, this will

not always be the case. The decision as to whether or not to try

Hayesian analysis in a particular situation is itself amenable

to Bayesian analysis. However, before we get into an infinite

regress we had better call it quits.
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